
BMT 2021 Power Round Solutions November 21, 2021

Maximum score: 120 points.
Instructions: For this test, you work in teams to solve a multi-part, proof-oriented question. Problems
that use the words “compute,” “list,” or “draw” require only an answer; no explanation or proof is needed.
Unless otherwise stated, all other questions require explanation or proof. The problems are ordered by
content, not difficulty. The difficulties of the problems are generally indicated by the point values assigned
to them; it is to your advantage to attempt problems throughout the test. In your solution for a given prob-
lem, you may cite the statements of earlier problems (but not later ones) without additional justification,
even if you haven’t solved them.
No Calculators.

1 Combinatorial Classics: Trees, Permutations, Partitions

1.1 Graphs and Trees

A graph provides a pictoral way to represent relationships between objects. There is a lot of combinatorics
that can be done on graphs, so we introduce them here in this section.
A graph consists of some vertices, which are points in the plane, and edges in between them. Some examples
of graphs are in Figure 1. A compact way to describe a graph is using set notation. Particularly, a graph
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Figure 1: Graphs G1 (left) and G2 (right)

G comprises of a set of vertices V , described by the labels on the vertices, and a set of edges E, described
by the vertices being connected by the edge.

Example 1.1. For the graph G1 in Figure 1, we say that G1 = (V1, E1) is a graph. Here V1 = {a, b, c, d}
is the vertex set. Additionally, E1 is the edge set that describes connections between two vertices. We
represent these connections as {·, ·}. In the case of G1, this is E1 =

¶
{a, b}, {b, c}, {c, d}, {d, a}

©
.

Example 1.2. Now consider the graph G2 = (V2, E2). The vertex set is V2 = {1, 2, 3, 4, 5}. The edge set

is
¶
{1, 2}, {1, 3}, {3, 4}, {3, 5}

©
.

Question 1.1.

(a) (2) Let V = {a, b, c, d, e} and E =
¶
{a, b}, {b, c}, {c, d}, {d, e}, {e, a}, {a, d}

©
. Draw the corresponding

graph G = (V,E) (with labels on vertices).

Solution : Elements {x, y} of E represent the fact that there is an edge between vertices x and y.
We get the following graph:
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Note that the way in which you draw the graph does not matter; you only have to make sure that
all vertices and the connections in between them are there.

(b) (2) A complete graph on n vertices, denoted by Kn = (Vn, En), is a graph where any two (distinct)
vertices are connected by exactly one edge. Consider K5 = (V5, E5), or the complete graph with 5
vertices. Express V5 and E5 as sets; no justification is needed. You may choose any set of 5 labels
for the vertex set.

Solution : Let V5 = {a, b, c, d, e}. Then E5 has connections between all distinct vertices:

E5 =
¶
{a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {c, d}, {c, e}, {d, e}

©
.

(c) (3) Draw the graph K5 from part (b). Compute the number of edges K5 has.

Solution :
a

b

cd

e

Clearly, there are 10 edges.

(d) (2) More generally, how many edges will the complete graph Kn have?

Solution : The number of edges of Kn is the number of ways to choose 2 distinct vertices out of
the n available vertices to make an edge connection, which is

(n
2

)
= n(n−1)

2 .

This suggests a more general definition for graphs:

Definition 1.1.1. A graph is a (ordered) pair G = (V,E) where

• V = {v1, v2, . . . , vn} is a set of vertices.

• E is a set of edges in between vertices, represented as

E =
¶
{vj , vk} : vj , vk ∈ V are joined by an edge

©
While this formal definition is very useful in its own world, we will mostly be looking at the picture form
of graphs: drawing vertices as points in the plane and edges as line connections between these points.
An important sub-family of graphs is trees.

Definition 1.1.2. A tree is a graph where any two vertices are connected by exactly one path. In other
words, a tree is a graph without any loops or cycles.

Trees are usually drawn in the up-to-down fashion of graph G2 in Figure 1 and the graphs in Figure 2.
We describe some specific kinds of trees.
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Definition 1.1.3. A rooted tree is a tree in which one specific vertex has been chosen as the root, with
other vertices below it.

Definition 1.1.4. A child of a vertex v is a vertex connected to and below v.

Definition 1.1.5. A n-ary tree is a rooted tree where each vertex has 0 or n children. If a vertex has
0 children, it is called a leaf. If a vertex has n children, it is called a node. We will specifically focus on
2-nary trees, also called binary trees.

Example 1.3. For example, the children of c in the blue rooted tree in Figure 2 are d and e. The vertex
A is the root. Since each vertex has 0 or 2 children, the tree is actually a 2-nary or binary tree.
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Figure 2: A rooted tree (left, blue) and some other trees (right, red)

Example 1.4. Here are all of the binary trees with 2 nodes.
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Figure 3: Binary Trees with 2 nodes

Question 1.2 (2). Compute the number of binary (2-nary) rooted trees with 3 nodes.

Solution : There are 5 possible base configurations for the nodes:

With 3! ways to permute the 3 nodes in each configuration, we get a total of 3! · 5 = 30 binary trees with
3 nodes.a

aMore generally, there are bn = n! · cn (labelled) binary rooted trees with n nodes, where cn = 1
n+1

(
2n
n

)
is a sequence of

numbers called the Catalan Numbers. These come up everywhere in combinatorics. Famously, Richard Stanley has an exercise
in his book Enumerative Combinatorics to find bijections between 66 different objects that involve Catalan numbers.

Question 1.3 (3). If a tree has n vertices, how many edges does it have? Prove your result. (Hint: Use
induction.)
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Solution : We prove this statement by induction on n. For the base case, this is trivial since the tree
on 1 vertex naturally has 0 edges. Now suppose trees on n vertices have n − 1 edges. Consider a tree
T = (V,E) on n+1 vertices. Then there necessarily exists a vertex v ∈ V that is connected to exactly one
other vertex xa: if {v, y}, {v, z} are both edges for y, z ∈ V distinct, then because a path exists from y to
z by definition of a tree, v− y− z− v is a loop in T , which contradicts the fact that T is a tree. Now upon
removing v and the edge {v, x}, we get a tree in n vertices, which by the induction hypothesis has n − 1
edges. Thus T has (n− 1) + 1 = n edges. By the principle of mathematical induction, we are now done.

ai.e, the degree of the vertex deg(v) = 1

1.2 Permutations

The next famous object from combinatorics that we will talk about is permutations. Roughly, a permu-
tation rearranges the elements of the set in some way. For example, σ1 acts on (rearranges the elements
of) {1, 2, 3} by sending 1 7→ 2, 2 7→ 3, and 3 7→ 1 is a permutation. Based on this, we can provide a more
general definition.

Definition 1.2.1. A permutation σ of a (finite) set S is a bijective function (one-to-one correspondence)
from S to itself that rearranges the elements. In other words, σ is a function that sends every element of
S to some element of S (possibly the same element), and no two elements are sent to the same element.

Typically, we think of permutations as acting on the set S = {1, 2, · · · , n}, denoted [n], of the first n
natural numbers.

Example 1.5. The following are some examples (and a non-example) of permutations:

• σ2 : [5] → [5] given by σ2(1) = 1, σ2(2) = 5, σ2(4) = 3, σ2(3) = 2, and σ2(5) = 4 is a permutation.

• σ3 : [4] → [4] given by σ3(i) = i for 1 ≤ i ≤ 4 is also a permutation. This permutation has a special
name; see the next definition.

• However, σ4 : [3] → [3] given by σ4(3) = 1, σ4(2) = 1, σ4(1) = 2 is NOT a permutation. This is
because 3 and 2 both map to 1 under σ4. The elements are not rearranged, but rather 3 and 2 are
superimposed by σ4.

Definition 1.2.2. For any natural number n, the permutation en : [n] → [n] given by en(i) = i for
1 ≤ i ≤ n is called the identity permutation. We use e to denote en for any n.

Definition 1.2.3. We usually express permutations in the one-line notation

σ =
Ä
σ(1) σ(2) σ(3) · · · σ(n)

ä′
.

The prime (′) at the end of the parenthesis is used to distinguish between another kind of notation that is
typically used for permutations.

Example 1.6. From Example 1.5, the permutation σ2 can be written in one-line notation as σ2 = (15324)′.

Definition 1.2.4. The composition of permutations σ ◦ τ , for permutations σ and τ of [n], is given by:

σ ◦ τ =
Ä
σ(τ(1)) σ(τ(2)) · · · σ(τ(n))

ä′
.

For example, consider σ = (3214)′ and τ = (2314)′. Then σ ◦ τ = (σ(2) σ(3) σ(1) σ(4))′ = (2134)′.

Question 1.4. For σ = (12345)′ and τ = (51324)′, compute the following:

(a) (1) σ ◦ τ (b) (1) τ ◦ σ (c) (2) σ3 = σ ◦ σ ◦ σ.
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Solution : We have

(a) σ ◦ τ = (σ(5) σ(1) σ(3) σ(2) σ(4))′ = (51324)′

(b) τ ◦ σ = (τ(1) τ(2) τ(3) τ(4) τ(5))′ = (51324)′

(c) σ3 = σ ◦ σ ◦ σ =
Ä
σ(σ(1)) σ(σ(2)) σ(σ(3)) σ(σ(4)) σ(σ(5))

ä′
= (σ(1) σ(2) σ(3) σ(4) σ(5))′ = (12345)′

Question 1.5. An element j ∈ [n] is fixed under σ if σ(j) = j.

(a) (1.5) Compute the number of permutations σ of [4] that fix no elements of [4].

Solution : We can use the principle of inclusion-exclusion here. Specifically, let Si be the set of
permutations which fix i ∈ [4]. Then the number of derangements is

n!− |S1 ∪ S2 ∪ S3 ∪ S4| = n!−#(atleast one fixed).

Note that there are (4 − 1)! = 6 ways to fix one element of [n], and then
(4
1

)
= 4 ways to choose

an element to be fixed. However, this overcounts elements where two elements are fixed. We thus
subtract by

(4
2

)
·(4−2)!, or the number of ways to fix two elements. But our difference has subtracted

too much, and we are not counting anymore the case where three elements are fixed. We add(4
3

)
· (4− 3)!. Finally, to remove the double-counted cases where all 4 elements are fixed, we subtract

1. Thus

#(atleast one fixed) =

Ç
4

1

å
· (4− 1)!−

Ç
4

2

å
· (4− 2)! +

Ç
4

3

å
· (4− 3)!− 1

= 24− 12 + 4− 1 = 15

Then
#(derangements) = 4!− 15 = 9.

Note: Another idea here would be to just count the derangements exhaustively since the number of
permutations is fairly small.

(b) (1.5) How many permutations τ of [5] fix exactly one element of [5]?

Solution : In order to fix exactly one element of τ , we choose one element to be fixed, and then
require that the remaining four elements are not fixed, i.e, that the remaining four elements form a
derangement of [4]. With

(5
1

)
= 5 ways to choose an element to fix and 9 derangements of [4] (from

Question 1.5), we get that there are 9 · 5 = 45 such permutations.

(c) (3) How many permutations of [n] are such that all but 2 elements of [n] remain fixed?

Solution : Consider permutations of [n] where all elements are fixed except for 2 elements, say i
and j. Then the only possible mapping for i and j is that they swap places with each other. Thus
to each non-fixed pair, there is only one corresponding valid such permutation of [n]. There are

(n
2

)
ways to choose non-fixed pairs from [n], so there are

(n
2

)
= n(n−1)

2 such permutations.
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Question 1.6 (4). A permutation σ =
Ä
σ(1) σ(2) · · · σ(n)

ä′
is said to be unimodal if the numbers in

its one-line notation increase at first then decrease with only one peak.
For instance, Ä

1 2 4 8 7 6 5 3
ä′

is unimodal.

More specifically, a permutation is unimodal if there exists k, with 2 ≤ k ≤ n− 1, such that σ(1) < σ(2) <
· · · < σ(k) and σ(k) > σ(k + 1) > · · · > σ(n). For n ≥ 3, how many permutations of [n] are unimodal?

Solution : In any permutation, fix the position of n ∈ [n] as the peak. Each element j ̸= n ∈ [n]
has a choice: it can either be in the increasing sequence to the left of [n], or it can be in the decreasing
sequence to the right of [n]. Since these increasing and decreasing sequences are unique, there is only one
arrangement of sequences to the left and right of n. Since each element has 2 choices, there are 2n−1 such
permutations. Removing the case of completely decreasing and completely increasing sequences (where n
is at the first place and where n is at the last place), we get 2n−1 − 2 unimodal permutations.

Question 1.7 (3). Compute the number of permutations of [4] that are involutions; i.e, compute the
number of permutations σ of [4] such that σ ◦ σ = e, where e is the identity.

Solution : Once again, since the total number of permutations is small, the easiest way to do this problem
is probably by brute force.
Otherwise, note that involutions occur when a permutation of [n] applied twice gives the identity. Thus for
σ an involution, every element must get mapped to itself under σ2. This is possible only if every element
is either fixed under σ, or if it swaps places with another element under σ (in which case applying σ again
returns it to the original position). Thus we can have 2 swaps, 1 swap and 2 fixed points, or 4 fixed points.
Now

#(2 swap permutations) = 3
î
(2143)′, (4321)′, (3412)′

ó
#(1 swap and 2 fixed point permutations) =

4!

2 · 2! · 1!
= 6

#(2 fixed point permutations) = 1.

Then the total number of involutions of [4] is 6 + 3 + 1 = 10.

Question 1.8 (5). Consider a permutation σ = (24315)′ of [5]. Notice that 1 7→ 2 7→ 4 7→ 1 and 3 7→ 5 7→ 3
(That is, σ(1) = 2, σ(2) = 4, σ(4) = 1 and σ(3) = 5, σ(5) = 3). Thus our permutation has two cycles. It
can then be written in cycle notation σ = (124)(35). Show that every permutation of [n] can be written
in cycle notation. (Hint: A pigeonhole argument works well here.)

Solution : We use strong induction to show that every permutation of [n] can be written in cycle notation,
for all n ∈ N. For the base case, note that σ = (1)′, the only permutation of [1], can trivially be written in
cycle notation as (1).
Now for some n ≥ 2, suppose that for 1 ≤ ℓ < n, every permutation of [ℓ] can be expressed in terms of
cycles. This forms our (strong) inductive hypothesis. Let σ be a permutation of [n]. Consider an arbitrary
element x ∈ [n], and now let us repeatedly apply the permutation σ and observe its effect on x. We get a
sequence of so-called σ-iterates

x 7→ σ(x) 7→ σ2(x) 7→ σ3(x) 7→ · · · .

Notice that for any m ∈ N, we naturally have σm(x) ∈ [n]. However, the set [n] is finite while the list
of σ-iterates is infinite, so by the pigeonhole principle, there must exist at least one K > 1 such that

6
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σK(x) = x. Let k be the smallest such natural number. Now consider the set

Sx = {x, σ(x), σ2(x), . . . σk−1(x)}.

Elements of Sx are distinct. This is easy to see: if σi(x) = σj(x) for 1 ≤ i < j < k, we have σj−i(x) = x
necessarily, contradicting the minimality of k since j − i < k.
If Sx = [n], we can write σ as the cycleÄ

x σ(x) σ2(x) . . . σk−1(x)
ä

and we are done because this cycle reveals the behavior of all elements of [n].
If Sx ⊂ [n], consider the set Tx = [n] \ Sx, or the set of elements of [n] that are not in Sx. Because Sx is
necessarily non-empty (it will surely contain x), we have that the cardinality of the set Tx is strictly less
than n. Now if we restrict σ to the set Tx, the new function τ must be a permutation of Tx. But as a
permtuation of a set with |Tx| < n elements, τ can be written in cycle notation by the inductive hypothesis.
Thus

σ =
Ä
x σ(x) σ2(x) . . . σk−1(x)

ä
τ

can also be written in cycle notation.

The advantage of cycle notation is that it makes the effect of repeated composition σ ◦ σ ◦ σ · · · ◦ σ much
more apparent. For instance, if σ = (124)(3)(5), then σ2 = σ ◦ σ = (142)(3)(5) and σ3 = (1)(2)(4)(3)(5) =
identity. Note that we are NOT adding a prime at the end of the parentheses for cyclic notation.

1.3 Partitions of integers and sets

Partitions are an absolute number theory classic, and have been famous for spawning a wide and diverse
variety of math. We can partition integers and sets, both of which carry a lot of cool math with them. We
begin with the former.

Definition 1.3.1. An integer partition (or simply partition) of n is a way of decomposing n into positive
integer summands, where the order of the summands does not matter.

For instance,
10 = 3 + 3 + 2 + 1 + 1

is a partition of 10 (order does not matter, so we typically go with descending order). Here are the
partitions of 4:

4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

Definition 1.3.2. The partition function p(n) is the number of partitions n has. As evident from above,
we have p(4) = 5.

Question 1.9 (2). Compute p(7).

Solution : We have p(7) = 15, simply by listing all the partitions: 7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 3,
4+2+1, 4+1+1+1, 3+3+1, 3+2+2, 3+1+1+1+1, 3+2+1+1, 2+1+1+1+1+1, 2+2+2+1,
2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1.

Question 1.10.

(a) (1) Let pe(n) be the number of ways to partition n into summands that are all even. Compute pe(7).

7



BMT 2021 Power Round Solutions November 21, 2021

Solution : Since 7 is odd, we cannot have a list of even numbers summing to 7. Thus pe(7) = 0.

(b) (1.5) Similarly, compute po(7), or the number of ways to partition 7 into summands that are odd
(for instance, 7 = 5 + 1 + 1).

Solution : From the complete list of partitions of 7 above, we count that there are 5 with all odd
summands; these are

7, 5 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1.

So po(7) = 5.

(c) (1.5) Finally, compute pd(7), which is the number of ways to partition 7 into distinct summands (for
example, 7 = 4 + 3 works, but not 7 = 5 + 1 + 1).

Solution : We count that there are 5 partitions with distinct summands:

7, 6 + 1, 5 + 2, 4 + 3, 4 + 2 + 1.

Hence pd(7) = 5.

Question 1.11 (5). Prove the following remarkable fact: The number of partitions of n into distinct
summands is equal to the number of partitions into odd summands; that is, pd(n) = po(n). (Hint: Use the
fact that every integer can be uniquely represented as a power of two times an odd integer.)

Solution : The hint suggests an interesting bijective proof to this problem. Consider a partition of n into
odd parts, and let ai be the number of times an odd number i appears in the partition. That is, we have

n = a1 · 1 + a3 · 3 + a5 · 5 + · · · ,

where ai ∈ {0, 1, 2, . . .}. Now express each ai in terms of their binary expansion; that is, write each ai as
a sum of powers of two:

a1 = 2x1 + 2x2 + · · ·+ 2xp

a2 = 2y1 + 2y2 + · · ·+ 2yq

...

Then we have

n = (2x1 + 2x2 + . . .+ 2xp) · 1 + (2y1 + 2y2 + . . .+ 2yq) · 3 + (2z1 + 2z2 + . . .+ 2zr) · 5 + · · · .

Upon expanding the brackets, we get

n = 1 · 2x1 + · · · 1 · 2xp + 3 · 2y1 + · · ·+ 3 · 2yq + · · · .

In the above partition of n, notice that every summand is a power of two times an odd integer, which by
the hint necessarily points to a unique integer. Thus every partition into odd summands corresponds to a
partition into distinct summands.

8
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To complete the one-to-one bijective correspondence, we need to show that every partition into distinct
summands corresponds to a partition into odd summands. For this, we simply reverse the process: let

n = d1 + d2 + · · ·+ dk

be a partition into distinct summands. Since di ̸= dj for i ̸= j, by the hint, we can write each di uniquely
as di = ci · 2bi for some odd ci and bi ≥ 0. Thus

n = c1 · 2b1 + c2 · 2b2 + · · · ck · 2bk .

Now collecting the coefficients for all the different odd numbers in the partition above, we get

n =
∑

(odd number) · (coefficients).

However, this is just a partition into odd summands, with the non-negative coefficients telling how many
times a particular odd number appears. This completes our bijective proof.

Question 1.12 (4). Let p(n, k) denote the number of partitions of n that have exactly k parts. Show that

p(n, k) = p(n− 1, k − 1) + p(n− k, k).

Solution : Partitions of n with k parts are of two types:

i) partitions (with k parts) that contain 1 as a summand, and

ii) partitions that do not contain 1.

Thus
p(n, k) = p1(n, k) + p2(n, k),

where p1(n, k) is the number of partitions of type i), while p2(n, k) is the number of partitions of type
ii). Now from a partition that contains 1, if we remove a single 1, we are left with a partition of n − 1
into k − 1 parts. Thus p1(n, k) = p(n − 1, k − 1). For a partition that does not contain 1, all summands
are greater than 1. Subtracting 1 from each summand, we get a partition of n − k into k parts. Thus
p2(n, k) = p(n− k, k). This gives

p(n, k) = p(n− 1, k − 1) + p(n− k, k)

as desired.

Next, we talk about partitions of sets.

Definition 1.3.3. A set partition of Xn = {1, 2, . . . , n} is a grouping of its elements into disjoint and
non-empty subsets Si for 1 ≤ i ≤ k such that S1 ∪ S2 ∪ · · · ∪ Sk = Xn. Note that the order of the sets and
the order of the elements within a set do not matter. We denote by Par(n) the number of set partitions of
Xn.

Example 1.7. For n = 3, we have

{1, 2, 3} = {1} ∪ {2} ∪ {3} = {1, 2} ∪ {3} = {1, 3} ∪ {2} = {2, 3} ∪ {1} = {1, 2, 3}

as all the possible set partitions, so Par(3) = 5.

Question 1.13 (2). Compute Par(4).

9



BMT 2021 Power Round Solutions November 21, 2021

Solution : One can exhaustively calculate Par(4) to be 15, since the result is quite small. However, we
can also solve this problem recursively. Consider an arbitrary set-partition of [4] = {1, 2, 3, 4}. If we remove
the set S that contains 4, then we are left with a set partition of a set T with k items, where 0 ≤ k ≤ 3.
Naturally, |S| = 4−k. Now for each k, there are

(3
k

)
ways to choose the elements that are in T (since 4 /∈ T

necessarily), and Par(k) ways to set-partition the elements of T . Note that S along with the set-partition
of T gives a set-partition of {1, 2, 3, 4}. Subsequently, there are

(3
k

)
Par(k) ways to set-partition {1, 2, 3, 4}

where the set S containing 4 has size 4− k. Summing over possible k, we get

Par(4) =

Ç
3

0

å
Par(0) +

Ç
3

1

å
Par(1) +

Ç
3

2

å
Par(2) +

Ç
3

3

å
Par(3)

= 1 · 1 + 3 · 1 + 3 · 2 + 1 · 5 = 15.

We see that in our approach, there is nothing special about the size of our parent set being 4. Indeed, we
can analogously prove that for all n

Par(n+ 1) =
n∑

k=0

Ç
n

k

å
Par(k).

The numbers Par(n) are known as Bell numbers in combinatorics, denoted Bn. They have many applica-
tions, and are particularly interesting to consider in the context of the theory of combinatorial species.

2 Generating Functions

Often in combinatorics and other fields, we find ourselves working with sequences a0, a1, a2, . . ., denoted
(an)n≥0. Generating functions furnish us with a powerful tool for working with sequences, and in many
cases, discovering new properties of them. There are two types of generating functions are often found
in combinatorics: ordinary generating functions and exponential generating functions. When it comes to
labelled structures (which is our focus for this power round), the latter is very useful.

Definition 2.0.1. Let (an)n≥0 be a sequence of real numbers. The exponential generating function
(EGF) of (an) is given by

A(z) =
∞∑
n=0

an
zn

n!
.

Note: It is important to note that generating functions are formal power series. (If you have not taken
Calculus, you can think of a power series as an infinite polynomial.) This means that we pay no mind to
whether or not these sums converge.

Example 2.1. A simple sequence we can consider is 1, 1, . . ., given by en = 1 for all n. In this case, we
have

E(z) =
∞∑
n=0

1 · z
n

n!
= 1 + z +

z2

2
+

z3

6
+ · · · .

This is an important function called the exponential function, and we write it as exp(z) or ez, where
e ≈ 2.718.

Example 2.2. Consider the sequence Pn = the number of subsets of {1, . . . , n}. When forming a subset
of {1, 2, 3 . . . , n}, note that each element has the choice of either being in the subset or not being in the
subset. Thus, there are two choices for each element, and a total of n elements. The number of subsets
then is

Pn = 2 · 2 · 2 · · · 2︸ ︷︷ ︸
n times

= 2n.
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The EGF P (z) of Pn then is

P (z) =
∞∑
n=0

2n · z
n

n!
=

∞∑
n=0

(2z)n

n!
= e2z.

Question 2.1. None of your final answers should be in summation notation.

(a) (2) Calculate the EGF Per(z) of pn = the number of permutations of {1, . . . , n} and justify your
answer. Hint: Use the formula for the sum of an infinite geometric series. You may ignore any
conditions on the common ratio usually involved.

Solution : Evidently, there are n! permutations of the set {1, . . . , n}. Then pn = n! for all n, and
so

Per(z) =

∞∑
n=0

pn · z
n

n!
=

∞∑
n=0

n! · z
n

n!

=
∞∑
n=0

zn =
1

1− z
,

where the last line follows by the summation formula for an infinite geometric series.

(b) (3) Let tn be the number of ways in which n distinct people can be arranged into pairs, and let T (z)
be the corresponding EGF. Then we have

tn =


(2k)!

2k · k!
n = 2k is even

0 n = 2k + 1 is odd

.

Prove that T (z) = ez
2/2.

Solution : Since all the odd terms are zero, we have

T (z) =

∞∑
n=0

tn · z
n

n!

=
∞∑
k=0

(2k)!

2k · k!
· z2k

(2k)!

=

∞∑
k=0

(z2/2)k

k!

Setting u = z2/2, the EGF takes the familiar form

T (u) =
∞∑
k=0

uk

k!
= eu.

Thus T (z) = ez
2/2.

11
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(c) (2) Calculate the EGF of (an), where for a given positive integer a, we define

an =

 1
(a−n)! if 0 ≤ n ≤ a

0 else
.

Justify your answer.

Solution : Since an = 0 for all n > a, our task reduces to evaluating a finite sum:

A(z) =
∞∑
n=0

an · z
n

n!
=

a∑
n=0

1

(a− n)!
· z

n

n!

The form of the denominator in the coefficient of zn resembles that of a binomial coefficient. Subse-
quently multiplying the top and bottom by a!, we get

A(z) =

a∑
n=0

1

(a− n)! · n!
· zn =

a∑
n=0

1

a!
· a!

n! (n− a)!
zn

=
1

a!

a∑
n=0

Ç
a

n

å
zn.

By application of the binomial theorem, this becomes

A(z) =
1

a!

a∑
n=0

Ç
a

n

å
zn1a−n =

(1 + z)a

a!
.

Generating functions offer us a compact way of encapsulating an entire sequence (an). Given the generating
function of a sequence, we can “read off” the elements of the sequence by calculating the coefficients of
the power series. In particular, if A(z) is the EGF of (an), then ak is the “coefficient of zk/k!”, which we
denote

ak =

ñ
zk

k!

ô
A(z).

Part of the niceness of generating functions is the fact that often times, arithmetic operations with gener-
ating functions correspond to meaningful operations on the sequences. For example, let (an) and (bn) be
sequences. Then we have

A(z) +B(z) =

Ñ
∞∑
n=0

an
zn

n!

é
+

Ñ
∞∑
n=0

bn
zn

n!

é
=

∞∑
n=0

(an + bn)
zn

n!
.

Thus, if cn = an + bn, then C(z) = A(z) +B(z).
One might be tempted to assume that if C(z) = A(z)B(z), then cn = anbn. However, this is not the case:

Question 2.2 (4). Let C(z) =
∑∞

n=1 cn
zn

n! . Show that if C(z) = A(z)B(z), then

cn =

n∑
m=0

Ç
n

m

å
ambn−m.

12
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Solution : We have

A(z)B(z) =

Ñ
∞∑
n=0

an
zn

n!

éÑ
∞∑
n=0

bn
zn

n!

é
=

∞∑
m=0

∞∑
n=0

am
zm

m!
· bn

zn

n!

=
∞∑

m=0

∞∑
n=0

ambn
m!n!

· zm+n

=

∞∑
m=0

∞∑
n=0

ambn
(m+ n)!

m!n!

zm+n

(m+ n)!

=
∞∑

m=0

∞∑
n=0

Ç
m+ n

m

å
ambn

zm+n

(m+ n)!

Now upon making the change of variables s = m+ n,

A(z)B(z) =

∞∑
s=0

s∑
m=0

Ç
s

m

å
ambs−m

zs

s!

=
∞∑
n=0

Ñ
s∑

m=0

Ç
s

m

å
ambs−m

é
zs

s!

It is interesting to see the binomial coefficient
(n
m

)
appear in the above formula. Recalling that

(n
m

)
is the

number of subsets of {1, . . . , n} with m elements, we may take this to suggest that multiplying EGFs is
somehow connected to choosing a subset of a set. (This will be made concrete later with combinatorial
species.)

Question 2.3 (3). Use the fact that P (z) = e2z from Example 2.2 and use the result of Question 2.2 to
prove that

n∑
k=0

Ç
n

k

å
= 2n.

Solution : It is evident that P (z) = E(z) · E(z), where

E(z) = ez =
∞∑
n=0

1 · z
n

n!

is the exponential function. Then by the result from Question 2.2, with P (z) = e2z =
∑∞

n=0 2
n · zn

n! , we
have

2n =
n∑

k=0

Ç
n

k

å
· 1 · 1 =

n∑
k=0

Ç
n

k

å
Question 2.4 (2). Prove Question 2.3 using a counting argument.

13
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Solution : We count the number of subsets of a set X with n elements in two different ways. For each of
the n elements, we have two choices: an element can either be in a subset S, or it can not be in S. Since
this approach generates all subsets, there are thus 2n total subsets of X.
On the other hand, note that for 0 ≤ k ≤ n, there are

(n
k

)
ways to choose a subset of k elements. Summing

over all possible k, we get that there are
∑n

k=0

(n
k

)
subsets of X. Thus it must be that

n∑
k=0

Ç
n

k

å
= 2n.

Definition 2.0.2. In addition to adding and multiplying generating functions, we can also compose them.
While there is an explicit formula for cn given C(z) = A(B(z)), we refrain from discussing it since it is
computationally intensive.

3 Combinatorial Species

3.1 What is a Combinatorial Species?

A very common theme in combinatorics is that combinatorial objects (like graphs) are defined either
implicitly or in terms of other objects. There are many instances of this:

• Remove the root of a binary tree and you have two binary trees!

• Permutations can be written in cycle notation (see Problem 1.8): that basically makes them a set of
cycles of different sizes.

In traditional combinatorics, we often use recursion to take advantage of these relations. That being said,
this approach can be messy and depends on the size n of the object (for example, number of vertices).
What if there was a way to get rid of n here? That is, what if we create relationships between two families
of structures?
Combinatorial species are a way for us to create these families, and then explore bijections between them.

Example 3.1. Let us start with an example. Given any set U , the combinational species Per is a rule
that produces the permutations of U . For instance, here is what Per produces for U = {1, 2, 3}:

{1, 2, 3}

e = (123)′ σ1 = (132)′ σ2 = (213)′

σ3 = (231)′ σ4 = (312)′ σ5 = (321)′

Per[{1,2,3}]

Figure 4: Action of the species Per on the set {1, 2, 3} produces permutations of {1, 2, 3}

Here, we denote by Per[U ] the resulting set {e, σ1, σ2, σ3, σ4, σ5} of permutations of U . We call any element
p ∈ Per[U ] a Per-structure on U . So σ1 = (132)′ is a Per structure on {1, 2, 3}.

Definition 3.1.1 (Combinatorial Species). A combinatorial species F is a rule that produces, for each
set U , a set F [U ] of combinatorial objects which use U as labels.

14
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Additionally, relabelling the set U does not change the structure of F [U ]. (For example, relabelling the
{1, 2, 3} with {4, 5, 6} in Example 3.1 does not change the inherent properties of σ1.) For our purposes,
this will be more of a technical condition that will be ignored. An element s ∈ F [U ] associated to the
species is called an F structure on U .

Thus, a combinatorial species produces a family of structures F [U ] out of sets U . The definition has a lot
to unpack, so we provide several examples.

• The species B of rooted binary trees: For example, if U = {1, 2, 3, 4, 5}, the rule B produces the
set B[U ] of binary trees with 5 nodes, labelled 1 through 5. Please carefully note that we are
saying nodes and not vertices! You can assign arbitrary labels to the leaves. An element b ∈ B[U ]
is a binary tree with 5 nodes labelled by U .

• The species T of trees. For any finite set U , an element t ∈ T [U ] is a tree of |U | = n nodes, with the
labels being elements of U .

• The single element species or atomic species Z defined by

Z[U ] =

{
{U} if |U | = 1

∅ otherwise
.

This species is used to single out one point from a combinatorial object.

• The one-species 1 represents the empty set, and is given by

1[U ] =

{
{U} if U = ∅
∅ otherwise

.

• Set is the species of sets. Set[U ] = {U} for all finite sets U .

• Cyc is the species of cyclic permutations, or permutations with only one cycle in cycle notation. Thus
if U = {1, 2, 3}, the species Cyc produces Cyc[U ] = {(123), (132)}.

• Der is the species of derangements, or permutations that leave no fixed points. For U = {1, 2, 3}, we
have Der[U ] = {(123), (132)}, where the permutations have been written in cycle notation.

Question 3.1 (2). Let I be the species of involutions, or permutations σ such that σ ◦σ = e. Here e is the
identity. Then by definition, I[U ] is the set of involutions of U . List two I structures on U = {1, 2, 3, 4}.

Solution : By the definition of a combinatorial species, the species I is a rule that generates involutions
of a set. Further, I structures on U = {1, 2, 3, 4} will be elements of I[{1, 2, 3, 4}], which is the set of
involutions of {1, 2, 3, 4}. Two involutions of {1, 2, 3, 4} are τ1 = (2143)′ and τ2 = (4321)′, which is our
answer.

Question 3.2 (2). Let V1 = {1, 2, 3, 4, 5} and V2 = {a, b, c, d, e}. What is the difference between trees in
the sets T [V1] and T [V2]?

Solution : The species T generates from V1 a set T [V1] of trees with 5 nodes labelled by {1, 2, 3, 4, 5},
and generates from V2 a set T [V2] of trees with 5 nodes labelled {a, b, c, d, e}. Thus the only difference
between trees in T [V1] and T [V2] is that their nodes are labelled differently.

Question 3.3 (3). Let Par be the species of (unordered) partitions of a set. For U = {1, 2, 3, 4}, what does
Par[U ] represent? Give an example of an element of Par[U ]. Finally, compute

∣∣Par[U ]
∣∣. Justification is not

required for this question.
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Solution : Given U = {1, 2, 3, 4} and the species Par of partitions, Par[U ] represents the set of partitions
of {1, 2, 3, 4}. Elements of Par[U ] are thus partitions of {1, 2, 3, 4}; as an example, {1} ∪ {2} ∪ {3} ∪ {4}
is an element of Par[U ]. The quantity

∣∣Par[U ]
∣∣ yields the number of set-partitions of {1, 2, 3, 4}, which by

Question 1.13 is 15.

Our ultimate goal with species, recall, is to relate different combinatorial species to each other in a nice
way. This requires a notion of equality.

Definition 3.1.2. Let F and G be two species of (combinatorial) objects. Then F and G are isomorphic,
denoted F = G, if they satisfy a condition of naturality: there is a bijection between F [U ] and G[U ] that
does not depend on the specific elements of U .

What this definition says is that anytime we want to show that two species are isomorphic, it is enough
to construct a bijection between f ∈ F [U ] and g ∈ G[U ] from the two species that does not depend on the
labels from U . See Example 3.2.

3.2 Species Operations

Definition 3.2.1 (Addition). Let F and G be two combinatorial species. Then the sum F + G of F and
G is also a species, defined as follows:
For a set U , an element s lies in (F +G)[U ] if s is a F structure on U or a G structure on U , but not both.

Definition 3.2.2 (Multiplication). Let F and G be two combinatorial species. Then F ·G (or equivalently
FG), called the product of F and G, is also a species, defined as follows:
An F ·G structure on U , say p ∈ FG[U ], is given by the ordered pair (f, g), where f ∈ F [U1] and g ∈ G[U2]
for some partition (U1, U2) of U (meaning U1 ∪ U2 = U and U1 ∩ U2 = ∅).
Thus for any set U , we have

FG[U ] = Union of F [U1]× G[U2] over all ways to partition U into (U1, U2).

It is evident that we don’t want to use the previous definitions for all our purposes. The following theorem
allows us to think about sums and products in a simpler way, without having to worry about the original
definitions.

Theorem 1 (Sum and Product Rules). Combinatorial sum and product theorems translate directly to sums
and products of species.

Example 3.2. Consider the combinatorial species B of (rooted) binary trees. Consider a structure b ∈
B[U ], which is a (possibly empty) binary tree with labels from U . One case is that b is empty, which
corresponds to the 1 species. If b is not empty, remove the root of b, which is the species Z. The remaining
structure will be a (possibly empty) binary tree spawning from one of the children, and another from the
other child. So

b ⇐⇒ empty or [root and (possibly empty) binary tree and (possibly empty) binary tree]

Since the bijection is independent of what elements of U actually are, in terms of species, this translates
into the isomorphism

B = 1 + Z · (B) · (B)

due to the Sum and Product rules. Thus

B = 1 + Z · B2.

.
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c d

e

Z
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1

a b ,
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c d

e

Figure 5: Bijection between binary trees, which leads to a species isomorphism (specifically, B[{Z, 1, 2, 3}]
is shown). Observe that the labels themselves have not been a part of our bijection.

Note: The expectation throughout the power round is that species isomorphism proofs are of the form of
Example 3.2; that is, using Theorem 1 and bijections that are independent of labels U .

Question 3.4. Prove the following isomorphisms in the manner of Example 3.2.

(a) (2) Prove that Per = Set · Der. (Hint: A permutation has points that stay fixed and those that
don’t.)

Solution : Let σ ∈ Per[U ] be an arbitrary permutation of a set U with |U | = n for some n ∈ N.
The permutation consists of some fixed points, with σ acting on the elements left as a derangement.
Specifically, let {f1, f2, . . . fk} be all the fixed points under σ. Then σ acting on the remaining (n−k)
elements forms a derangement. Thus

σ ⇐⇒ (set of fixed points) and (derangement)

The combinatorial species corresponding to a set of fixed points naturally is Set, and the species
corresponding to derangements is Der. Since the bijection above was independent of the elements of
U , we have by the product rule that

Per = Set · Der.

(b) (2) Let P be the species of power sets. That is, for a finite set U , a structure in P[U ] is a set of
subsets of U . Prove that P = Set · Set.

Solution : For a set U , first note that P ∈ P[U ] is a subset of U , since the species P should map U
to its power set P[U ], which is the set of subsets of U . Now as a subset of U , we form P by choosing
a set of elements from U to be included, with the remaining elements being excluded. Thus in similar
fashion to part (a), we see that

P ⇐⇒ (set of elements in P ) and (set of elements not in P )

Since the bijection is independent of what U actually is, we get the species isomorphism

P = Set · Set.

The definition of composition is extremely convoluted, but it serves as a valuable operation in the theory
of species. We will focus solely on set composition of species, since this has the most applications in the
theory and is easiest to understand.
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Definition 3.2.3. A set composition C = Set ◦ G, also denoted C = Set(G), is a combinatorial species.
A C structure on some label set U is a collection (or set) of G structures {g1, g2, . . . , gk}, where each gi is
an G structure defined on a set partition Ui. (In other words, U1 ∪ U2 ∪ · · · ∪ Uk = U , and Ui ∩ Uj = ∅ for
all 1 ≤ i ̸= j ≤ k.)

Example 3.3. Considering the species Cyc of cycles, if U = {1, 2, 3, 4}, then
{
(1234)

}
,
{
(13), (24)

}
, and{

(1), (2), (34)
}
are elements of Set(Cyc)[U ].

Question 3.5. Prove the following relations:

(a) (2) Let Par be the species of partitions. Then Par = Set◦Set+, where Set+ is the species of non-empty
sets so that 1 + Set+ = Set. Recall that 1 is the one-species

Solution : Consider an arbitrary set U . Recall that by definition, a set partition p ∈ Par[U ] is a set
of non-empty subsets of U whose union forms Ua. Thus we can say that p is a set of Set+ structures
(since we require subsets to be non-empty). In other words, we have

Par = Set ◦ Set+.
aFor instance, if U = {1, 2, 3, 4}, we have {1, 2} ∪ {3} ∪ {4} as a set partition.

(b) (3) Per = Set ◦ Cyc.

Solution : By virtue of Question 1.8, we know that every permutation can be expressed as a set of
disjoint cycles. Subsequently, we can view any permutation σ ∈ Per[U ] as a set of Cyc structures, so

Per = Set ◦ Cyc.

4 Magic

4.1 Combinatorial Species and Generating Functions

The past two sections are connected in a very beautiful manner that we will now get to experience.
Generating functions are an amazing way to encode all the information about species. Since combinatorics
is about enumeration, we concern ourselves with

∣∣F [U ]
∣∣; without loss of generality, we only consider

|F [n]| :=
∣∣F [{1, 2, . . . , n}]

∣∣.
Definition 4.1.1. For a species F , the associated exponential generating function is defined to be the
formal power series

F (z) =
∞∑
n=0

fn
zn

n!
,

where fn = |F [n]|.

Example 4.1. Let B(z) =
∑∞

n=0 bn
zn

n! be the EGF for binary trees. Then bn = |B[n]| is the number of
binary trees on a set with n nodes.

Example 4.2. Consider Set and its generating function Set(z) =
∑∞

n=0 sn
zn

n! . Recall that for nonempty
U , Set[U ] has only one element {U}, so sn = 1 for all n. But from Section 3, we know then that

Set(z) =
∞∑
n=0

1 · z
n

n!
= ez.
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Question 4.1. Prove the following EGF-species correspondences:

(a) (2) The EGF for F + G is F (z) +G(z).

Solution : Let H = F + G. From the definition, it is evident that for any U , the set H[U ] is the
result of the disjoint uniona of F [U ] and G[U ] (elements of H[U ] are either in F [U ] or in G[U ], but
not in both). Then it is evident that

hn =
∣∣H[n]

∣∣ = ∣∣F [n] ⊔ G[n]
∣∣ = |F [n]|+ |G[n]| = fn + gn.

Subsequently, with H(z) the EGF of H = F + G, we have

H(z) =
∞∑
n=0

hn
zn

n!
=

∞∑
n=0

(fn + gn)
zn

n!
=

∞∑
n=0

fn
zn

n!
+

∞∑
n=0

gn
zn

n!
= F (z) +G(z).

aA slight nuance here is that the sets F [U ] and G[U ] may not be disjoint. This is easily resolved by considering
isomorphic sets F ′ = F [U ]× {x} and G′ = G[U ]× {y}, where x, y are distinct elements not in F [U ] or G[U ]. This way,
any common element c is identified differently as {c, x} and {c, y} for the two species.

(b) (5) The EGF for F · G is F (z)G(z). (Hint: Compare the product definition 3.2.2 to the result of
Problem 2.2.)

Solution : Let Q = F · G. Recall that for the set [n] = {1, 2, . . . , n},

Q[[n]] = Union of F [U1]× G[U2] over all ways to partition [n] into (U1, U2).

Thus we wish to find

qn =

∣∣∣∣Union of F [U1]× G[U2] over all ways to partition [n] into (U1, U2)

∣∣∣∣ = ∑
(U1,U2)

∣∣∣F [U1]× G[U2]
∣∣∣,

where the cardinality of a union becomes a sum of set cardinalities because we can make sets F [U1]
and G[U2] disjoint by the procedure highlighted in the footnote from part (a). Now for some k with
0 ≤ k ≤ n, note that if |U1| = k, then we naturally must have |U2| = n− k. Thus∣∣F [U1]× G[U2]

∣∣ = ∣∣F [U1]
∣∣ · ∣∣G[U2]

∣∣ = fkgn−k

For this specific k, there are
(n
k

)
ways to form the set U1, while the remaining elements necessarily form

U2. Thus we have
(n
k

)
total set partitions with |U1| = k, all of which yield

∣∣F [U1]× G[U2]
∣∣ = fkgn−k.

Summing over all possible k, we would cover all possible set partitions of [n], thus

qn =
∑

(U1,U2)

∣∣∣F [U1]× G[U2]
∣∣∣ = n∑

k=0

Ç
n

k

å
fkgn−k.

However, by the reversing the argument for Question 2.2, if Q(z) =
∑∞

n=0 qn
zn

n! is the EGF of Q, we
can conclude that

Q(z) = F (z)G(z)

as desired.

Now we can give true meaning to a lot of the species isomorphisms. This is accomplished by the following
theorem.
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Theorem 2. Isomorphic species have the same EGF.

The EGF-species correspondence extends to set composition in the expected way.

Theorem 3. The EGF of Set ◦ G is exp(G(z)) = eG(z), given that [z0/0!]G(z) = 0. In other words, the
z0/0! term, or constant term, is zero for G(z).

A proof of this theorem relies on a lot of heavy algebra and the actual definition of composition. We avoid
that exposition here; however, feel free to use Theorem 3 in future exercises.

4.2 Permutation Statistics

Since all our work has been regarding labelled structures, one of the really amazing things that we can do
is derive interesting results about permutations.
Note: All of the questions in this section can be solved nicely using the theory of species developed so far,
but you are free to use any method of proof.

Question 4.2 (5). Let I be the species of involutions. Show that I has EGF

I(z) = exp

Ç
z +

z2

2

å
.

Use this to show that we have the formula

In =
[zn
n!

]
I(z) =

⌊n/2⌋∑
k=0

Ç
n

2k

å
(2k)!

k! · 2k
.

Hint: Try to prove the species isomorphism I = Set(Cyc1+Cyc2), where Cycj denotes the Species of cycles
that are of length k. This says that involutions can only have cycles of length 1 and 2. Why?

Solution : Consider a permutation σ of [n] which is an involution, so that σ2 = e. As a permutation, σ
can be written in terms of several disjoint cycles. Now consider a cycle π in σ. If π = (a), then we know
that a 7→ a under σ. Then a 7→ a under σ2, so we indeed could have σ2 = e since a is fixed. Similarly, if
π = (a, b), we get a 7→ b 7→ a under σ and then a 7→ a, b 7→ b under σ2. Thus π = (a, b) also allows σ to be
an involution.
However, now consider the case where π = (a, b, c). Then under σ2, we have a 7→ c ̸= a, so σ2 does not
equal the identity. One can see that a similar problem would persist for larger cycles; in fact, if σ has a
cycle π of length greater than 2, then σ cannot be an involution.
Thus any involution σ ∈ I[[n]] is necessarily a set of cycles with length 1 and 2. Subsequently, we have the
species isomorphism I = Set(Cyc1 + Cyc2). This translates to the EGF equality

I(z) = exp
î
Cyc1(z) + Cyc2(z)

ó
,

where Cycj(z) is the EGF for the species Cycj .

The next step is to find a nice form for the EGF Cycj(z) =
∑∞

n=0 cn(j)
zn

n! , where cn(j) is the number of
cycles of length j that are permutations of [n].

Claim: We have Cycj(z) =
zj

j .

Proof. Obviously, for n ̸= j, we have cn(j) = 0 since the cycle of length j is permuting too few or too
many elements, and hence does not give a one-to-one correspondence. For n = j, there are n! ways to
permute the n elements of the cycle π. However, notice that given a cycle π = (c1, c2, . . . , cn), we can shift
the elements by 1 to get an identical cycle (cn, c1, . . . , cn−1). There are n ways to do this and get the same
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redundant cycle. Thus

(# cycles) =
n!

n
= (n− 1)! = (j − 1)!.

Then

Cycj(z) =

∞∑
n=0

cn(j)
zn

n!
= (j − 1)! · z

j

j!
=

zj

j

as claimed.

Now we can return to our work with I(z). We have

I(z) = exp
î
Cyc1(z) + Cyc2(z)

ó
= exp

(
z +

z2

2

)
,

which proves the first part. Next, recall that I(z) = ez · T (z), where T (z) is the EGF from Question 2.1
part (b). Then by the result of Question 2.2, we have

In =

n∑
ℓ=0

Ç
n

ℓ

å
tℓ · 1.

Now since tℓ =
(2k)!
2k·k! for ℓ = 2k even and is zero otherwise, we make the substitution ℓ = 2k to obtain

In =

⌊n/2⌋∑
k=0

Ç
n

2k

å
t2k =

⌊n/2⌋∑
k=0

Ç
n

2k

å
(2k)!

2k · k!
.

a

aAlternatively, one could note that ez+z2/2 =
∑∞

n=0
(z+z2/2)n

n!
, then use the binomial theorem.

Question 4.3 (5). Generalize the result of Question 4.2: let Um be the species of “mth roots of unity,” or
permutations σ such that σ ◦ σ ◦ σ · · · ◦ σ︸ ︷︷ ︸

m times

= σm = identity. Show that the EGF Um(z) of Um is

Um(z) = exp

Ñ∑
d|m

zd

d

é
.

Solution : We begin by generalizing the restriction of cycle lengths that was done for involutions.
Lemma: Let σ be a permutation of [n] such that σm = e. Then it is necessary and sufficient that for σ in
cycle notation, the length of each cycle must divide m.

Proof. Let σ be a permutation of [n] and let π be a cycle of σ of length ℓ. Let a be an element of the cycle
π. Then by the way in which cycles are constructed, if b = σm(a), we have

a 7→ · · · 7→︸ ︷︷ ︸
m times

b

under σ. That is, in cycle notation, a and b are m steps away. However, note that cycle loops back when
we reach the last element, so the distance between a and b in reality would be m mod ℓ. But we know that
m is such that σm = e, so it must be that σm(a) = a. Subsequently a = b, which means a and b are zero
steps away. Then m mod ℓ = 0, which implies ℓ | m necessarily.
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To show that this divisor condition is sufficient, let σ = τ1τ2 · · · τk, where τi is a cycle of length ℓi acting
on a distinct subset of [n]. Naturally, we must have τ ℓii = e since we are back where we started in the cycle
after ℓi steps. Now if the length of each cycle ℓi | m, there exists bi such that ℓi · bi = m. Since the subsets
that τ ′is act on are all disjoint, we have σm = τm1 τm2 · · · τmk . But then

σm = τ ℓ1b11 τ ℓ2b22 · · · τ ℓkbkk

= (τ ℓ1)b1 (τ ℓ2)b2 · · · (τ ℓk)bk

= eb1eb2 · · · ebk = e.

We can now return to finding an expression for the species Um. Since for any σ ∈ Um we have σm = e,
it must be that σ is a set of several disjoint cycles, each with length dividing m. This translates to the
species isomorphism

Um = Set
(∑

d|m

Cycd

)
,

where
∑

represents the sum of species. By the claim in part (a), we find the EGF of Um to then be

Um(z) = exp
(∑

d|m

Cycd(z)
)
= exp

(∑
d|m

zd

d

)
.

Question 4.4 (8). Let Pk(n) be the probability that a random permutation of [n] does not contain a cycle
of length k. Show that Pk(n) → e−1/k as n → ∞.
Hint: Let Pk(n) be the number of permutations of [n] without a cycle of length k, and set Pk(z) =∑∞

n=0 Pk(n)
zn

n! . Argue why evaluating the telescoping sum (1 − z)Pk(z) at z = 1 allows us to compute

limn→∞ Pk(n) = limn→∞
Pk(n)
n! .

Solution : Let Per ̸=k be the species of permutations that do not contain a cycle of length k. Then for
σ ∈ Per ̸=k[[n]], we see that σ must be a set of several cycles which are restricted to not have length k. In
terms of species, we then have

Per ̸=k = Set(Cyc ̸=k),

where Cyc̸=k is the species of cycles that are not of length k, or the species such that Cyc̸=k +Cyck = Cyc.
Claim: The EGF of Cyc̸=k is given by

Cyc̸=k(z) = log
( 1

1− z

)
− zk

k

Proof. As derived in the solution for Question 4.2, we have Cyck(z) =
zk

k . Now recall from Question 3.5
(b) that Per = Set(Cyc). Since Per(z) = 1

1−z from Question 2.1 (a), we have

1

1− z
= eCyc(z), or Cyc(z) = log

( 1

1− z

)
.

Now the isomorphism of species Cyc̸=k + Cyck = Cyc implies that Cyc̸=k(z) + Cyck(z) = Cyc(z), from
which the claim follows.

Now with Pk(z) the EGF corresponding to Per ̸=k,

Pk(z) = exp

ñ
log

( 1

1− z

)
− zk

k

ô
=

e−zk/k

1− z
.

22



BMT 2021 Power Round Solutions November 21, 2021

The next step is to prove the result from the hint. Consider Gk(z) = (1− z)Pk(z) as a formal power series:

Gk(z) = (1− z)Pk(z) = (1− z)
∞∑
n=0

Pk(n)
zn

n!

= Pk(0) +

ñ
Pk(1)

z

1!
+ Pk(2)

z2

2!
+ · · ·

ô
−
ñ
Pk(0)

z

0!
+ Pk(1)

z2

1!
+ · · ·

ô
.

Let g
(N)
k (z) be the partial sums of the formal power series Gk(z). That is,

g
(N)
k (z) = Pk(0)+

ñ
Pk(1)

z

1!
+ Pk(2)

z2

2!
+ · · ·+ Pk(N)

zN

N !

ô
−
ñ
Pk(0)

z

0!
+ Pk(1)

z2

1!
+ · · ·+ Pk(n− 1)

zn

(n− 1)!

ô
.

Evaluating at the partial sums at z = 1, we get a series that telescopes

g
(N)
k (1) =

ï
Pk(0)− Pk(0)

1

0!

ò
+

ñ
Pk(1)

1

1!
− Pk(1)

12

1!

ô
+ · · ·+

ñ
Pk(N − 1)

1N−1

(N − 1)!
− Pk(N − 1)

1N

(N − 1)!

ô
+ Pk(N)

1N

N !
=

Pk(N)

N !

Naturally, we have PK(N) = Pk(N)
N ! since there are a total N ! permutations of [N ], out of which Pk(N)

satisfy the condition we care about. Thus g
(N)
k (1) = Pk(N). Thusa

lim
N→∞

Pk(N) = lim
n→∞

g
(N)
k (1) = Gk(1) = (1− z)Pk(z) |z=1

Then since

(1− z)Pk(z) |z=1 = e−zk/k
∣∣∣
z=1

= e−1/k,

we have Pk(N) → e−1/k as N → ∞.

aA detail that we are glossing over here is that we assume the limits commute; i.e, that we have

lim
N→∞

lim
z→1

g
(N)
k (z) = lim

z→1
lim

N→∞
g
(N)
k (z) = lim

z→1
Gk(z) = Gk(1).

A sufficient condition for the above to hold is that of uniform convergence, but proving it requires exposure to mathematical
analysis.

Question 4.5 (10). Show that the probability that the shortest cycle of a permutation of [n] has length
greater than k as n → ∞ is

≈ 1

eγk
.

The ≈ symbol comes from

1 +
1

2
+ · · ·+ 1

k
≈ ln(k) + γ,

where γ is the Euler-Mascheroni constant; feel free to treat this approximation as equality.
Hint: Start with Per>k = Set ◦ Cyc>k. Here Per>k is the species of permutations with shortest cycle of
length greater than k. Cyc>k is the species of cycles of length greater than k.
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Solution : Let P>k(z) =
∑∞

n=0 P>k(n)
zn

n! be the EGF corresponding to the species Per>k. Let P>k(n) =
P>k(n)

n! be the probability that the shortest cycle of a permutation of [n] has length greater than k. In
similar fashion to the previous problem, we find P = limn→∞ P>k(n) by evaluating (1− z)P>k(z) at z = 1.
For the species Cyc>k, since a cycle can either have length > k or can have length ranging from 1 through
k, we get the isomorphism of species

Cyc = Cyc>k + (Cyc1 + Cyc2 + · · ·Cyck) .

In terms of exponential generating functions, this translates to

Cyc(z) = Cyc>k(z) +
(
Cyc1(z) + Cyc2(z) + · · ·+Cyck(z)

)
,

or with the results Cyc(z) = − log(1− z),Cyck(z) =
zk

k derived before,

Cyc>k(z) = log
( 1

1− z

)
−
Ç
z +

z2

2
+ · · ·+ zk

k

å
.

Then the isomorphism of species Per>k = Set(Cyc>k) translates for EGFs into

P>k(z) = exp

[
log

( 1

1− z

)
−
Ç
z +

z2

2
+ · · ·+ zk

k

å]
=

e
−
Å
z+ z2

2
+···+ zk

k

ã
1− z

.

Subsequently,

P = lim
n→∞

P>k(n)

n!
= (1− z)P>k(z) |z=1

= e−(1+
1
2
+···+ 1

k )

≈ e− ln(k)−γ =
e−γ

k
.
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