Time limit: 60 minutes.

Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.

No calculators.

- 1. Shreyas has a rectangular piece of paper ABCD such that AB = 20 and AD = 21. Given that Shreyas can make exactly one straight-line cut to split the paper into two pieces, compute the maximum total perimeter of the two pieces.
- 2. Compute the area of the smallest triangle which can contain six congruent, non-overlapping unit circles.
- 3. In quadrilateral ABCD, suppose that \overline{CD} is perpendicular to \overline{BC} and \overline{DA} . Point E is chosen on segment \overline{CD} such that $\angle AED = \angle BEC$. If AB = 6, AD = 7, and $\angle ABC = 120^{\circ}$, compute AE + EB.
- 4. An equilateral polygon has unit side length and alternating interior angle measures of 15° and 300° . Compute the area of this polygon.
- 5. Let circles ω_1 and ω_2 intersect at P and Q. Let the line externally tangent to both circles that is closer to Q touch ω_1 at A and ω_2 at B. Let point T lie on segment \overline{PQ} such that $\angle ATB = 90^{\circ}$. Given that AT = 6, BT = 8, and PT = 4, compute PQ.
- 6. Consider 27 unit-cubes assembled into one $3 \times 3 \times 3$ cube. Let A and B be two opposite corners of this large cube. Remove the one unit-cube not visible from the exterior, along with all six unit-cubes in the center of each face. Compute the minimum distance an ant has to walk along the surface of the modified cube to get from A to B.

- 7. The line l passes through vertex B and the interior of regular hexagon ABCDEF. If the distances from l to the vertices A and C are 7 and 4, respectively, compute the area of hexagon ABCDEF.
- 8. Let $\triangle ABC$ be a triangle with AB=15, AC=13, BC=14, and circumcenter O. Let l be the line through A perpendicular to segment \overline{BC} . Let the circumcircle of $\triangle AOB$ and the circumcircle of $\triangle AOC$ intersect l at points X and Y (other than A), respectively. Compute the length of \overline{XY} .
- 9. Let ABCD be a convex quadrilateral such that $\triangle ABC$ is equilateral. Let P be a point inside the quadrilateral such that $\triangle APD$ is equilateral and $\angle PCD = 30^{\circ}$. Given that CP = 2 and CD = 3, compute the area of the triangle formed by P, the midpoint of segment \overline{BC} , and the midpoint of segment \overline{AB} .

10. Consider $\triangle ABC$ such that CA + AB = 3BC. Let the incircle ω touch segments \overline{CA} and \overline{AB} at E and F, respectively, and define P and Q such that segments \overline{PE} and \overline{QF} are diameters of ω . Define the function \mathcal{D} of a point K to be the sum of the distances from K to P and Q (i.e. $\mathcal{D}(K) = KP + KQ$). Let W, X, Y, and Z be points chosen on lines \overline{BC} , \overline{CE} , \overline{EF} , and \overline{FB} , respectively. Given that $BC = \sqrt{133}$ and the inradius of $\triangle ABC$ is $\sqrt{14}$, compute the minimum value of $\mathcal{D}(W) + \mathcal{D}(X) + \mathcal{D}(Y) + \mathcal{D}(Z)$.