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Introduction

The Billiards Masters Tournament (BMT), in an effort to boost its reputation, is about to host
its annual crazy billiards tournament and is hiring you to analyze its newest tables. Your job is to
determine crazy mathematical properties that BMT can use to help its billiard masters get better
at their trade.

Good luck, and have fun!

Mathematical Billiards

The mathematics of Billiards is essentially the same as the mathematics that physicists use when
examining optics. In general, when light hits a mirror, the trajectory of light obeys the law of
reflection, explained in the figure below. Similarly, when a billiards ball hits the edge of the table,
it always bounces off according to this law. This technique has been employed by Billiards Masters
for years.

Path Begin Path End

0 0 Edge

Figure 1: The Law of Reflection: Trajectories once they hit an edge, bounce off of that edge with
the same angle they entered at.

A billiards table T is a two dimensional bounded polygon with special points called pockets.
We note that the corners of T" are always pockets. A curve on T is called a trajectory if it travels
along a straight line, follows the law of reflection when it hits the edge of the table, and stops when
it hits a pocket. The reason for this is that the law of reflection is undefined at corners.

We can think of a trajectory as a function of time P(t) that takes in a non-negative time ¢t and
returns a position of a ball on the billiards table after ¢ seconds, assuming that all billiard balls
move at a speed of one unit per second.

Since the law of reflection is symmetric, we can also imagine “running the clock in reverse.” So we
define P(t) for t < 0 as the trajectory P(—t), where P(t) is the trajectory of the ball starting at
P(0) and moving in the opposite direction as P.

The starting point of the ball is therefore P(0). Starting points can be anywhere on the table,
including on the edges, as long as they are not pockets.
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Analyzing Billiard Trajectories

Definition. We say a billiards trajectory P(t) on a surface is periodic if it “loops” back onto
itself. That is, there exists a positive constant C such that P(t+ C) = P(t) for all t. The minimum
positive constant C' for which this is true is known as the period of the trajectory.

Definition. A trajectory P is degenerate if there exists a ¢ > 0 such that P(t) is a pocket.

Definition. A trajectory P;(t) contains a trajectory P»(t) if there exists a positive constant C
such that Py (t + C) = Py(t). We call P, a rewind of P». Similarly, P; is a fast-forward of P;.

Definition. The combinatorial period of a periodic trajectory T on a mathematical billiards
table is the size of the following set:

{0 <t < C|P(t)is on an edge}

where C' is the period of T. In other words, it is the number of times the trajectory hits an edge
before repetition.

Note: The trajectory can hit the same edge multiple times, and in fact it can hit the same point
multiple times. These are counted as distinct.

Definition. The slope of a trajectory is the initial slope of the the line P(0)P(t;) where ¢; is the
first time P hits a wall.

Definition. An n-billiards table is a regular n-gon with unit side lengths and pockets at all
corners. We also implicitly embed the n-billiards table on the 2D-plane such that it is oriented
such that its bottom-most edge, called the base, is on the positive z-axis, and the left-most point
of the base is the origin.

Example. Here is an example of a periodic billiard trajectory on the 4-billiards table (i.e unit
square now treated as a billiard table).
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Figure 2: A periodic trajectory (dashed) on the unit square. Starts at (0.8,0.2) moving at a 45°
angle with the base.

Remark. For the entire power round, whenever angles are specified, they are specified as counter-
clockwise from the base of the billiards table. For instance, in the figure above, the periodic
trajectory is moving at a 45 degree angle from the base of the 4-billiards table.
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1. Draw out the following trajectories and determine whether the following trajectories are
either periodic or degenerate on the 4-billiards table. If they are periodic, determine their
combinatorial period. No proof required.

(a) [5] A trajectory that starts at (0.2,0.6) moving towards the point (0.3,0.9).

(b) [5] A trajectory that starts at (%, %) moving diagonally up and to the left (i.e. at a 135°
angle relative to the base).

Solution to Problem 1:

(a) Extending the trajectory, we see that it will intersect the top edge at (%, 1). The next
time is at (%, 0) and after that it hits (1,0), which is a degenerate point. Therefore, the

trajectory is .

(b) Extending the trajectory, we see that this forms a rectangle within the larger square,
since the intersection angles happen at 45° . None of these points hit on the edge are
integral, so therefore the path repeats and it is with combinatorial period 4.
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2. [10] Show that for any periodic trajectory on any billiards table, its combinatorial period
must be greater than 1.
Solution to Problem 2:

Extend the path in both positive and negative time. Since the path is contained within a
bounded billiards table, both sides must eventually hit an edge. This point cannot be the
same, so the path must hit at least 2 edges, so the period is at least 2.

3. (a) [3] Show that if trajectory P; contains P» then Pj is degenerate if and only if P is
degenerate.
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(b) [4] Show that if trajectory P; contains P5 then P is periodic if and only if Ps is periodic.

(¢) [3] Show that every periodic trajectory P has a rewind @ such that @Q(0) is on the edge
of the table.

Solution to Problem 3:

(a) If P, is degenerate then there exists a C such that P;(C) is a degenerate point. Since
P contains P5 there must exist a C’ < C by necessity such that Py (t+ C’) = P(t). But
then P (C) = P,(C — ") is a degenerate point. Since C' —C > 0, we see that this value
exists and so P, is degenerate.

Conversely, if P5 is degenerate then there exists C; such that P»(Cp) is a degenerate
point. Since P; contains P there exists a Cy such that P;(t4Cs) = Py(t). Consequently
Py(Cy 4 C3) = P»(Cs) which is a degenerate point, so P; is degenerate.

(b) If Py is periodic then there exists a C' such that P;(C +t) = Pi(t) for all ¢. Since
Py contains P, there must exist a C’ such that Py(t + C') = P(t). But then P(t) =
Pi(t+C")=Pi(t+C+C") = Py(t+ ') for all t. Therefore P; is periodic.

Conversely let P5 be periodic, so Py(t + C') = Ps(t) for some C. Then by the definition
of rewind we see that there exists C; such that P (t — C1) = Pi(t) for all t. Therefore
Pi(t) = Py(t — C1) = Po(t+ C — C1) = Pi(t + C) for all t and we are done.

(¢) If P is periodic, let ¢’ be such that P(¢') is the point on the last edge that P hits before
repeating. Let Q(t) = P(t +t'). Then, Q(t) is a fast-forward of P(t). Additionally, by
periodicity of Q, Q(t + C) = P(t +t'). Since C > t', we see that Q(t + C —t') = P(t)
so @ is a rewind of P with Q(0) on the edge of the table.

Periodic Trajectories on Regular Polygons

AN |

(a) The 3-billiards table (b) The 5-billiards table

Figure 3: The black dots represent pockets and origin is located at the bottome left pocket for each
table.

4. (a) [1] Draw the periodic trajectory on the 4-billiards table starting at the point (3,0) and
moving at an angle of 45° from the base. Compute its combinatorial period?

(b) [1] Draw the periodic trajectory on the 3-billiards table starting at the point (3, 0) and
moving at an angle of 60° from the base. Compute its combinatorial period?

(¢) [1] Draw the periodic trajectory on the 5-billiards table starting at the point (3, 0) and
moving at an angle of 72° from the base. Compute its combinatorial period?

(d) [4] Consider an n-billiards table. Label the pockets of the table Cy...C,_; counter-
clockwise from the origin and let the points Fy...F,_1 be defined such that P; is the

midpoint of C;C 11 (mod n)- Show that for i # j, ZCiy1 (mod n)PiPj is (w) g

n

Note: CiCiy1 (mod n) means that i,i+ 1 are taken modulo n (i.e Cop = Cy).
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(e) [3] Show that for any n-billiards table, a trajectory starting at the midpoint of the base
and traveling at an angle of (%)O from the base is periodic, where 0 < k < n and k is
an integer. Determine, with proof, its combinatorial period in terms of k and n?

Solution to Problem 4:

(a) The combinatorial period is [4].

D G C
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(b) The combinatorial period is .

F E
y
60°

(¢) The combinatorial period is .

(A,

(d) By symmetry of the table we can rotate P; such that it is the same as Py. Thus, WLOG,

¢ = 0, and we need only prove that ZC1 Py P; =

%O. Inscribe a circle inside the polygon

centered at O. Then, the arc-lengths of O subtended by Py P; have the same arc measure,

y O
namely @

the arc-length from P to P; =

n

. Now, by the inscribed angle theorem in circles, ZC7 P P; is exactly half
300k Qo L0y Py Py = 1807,

n

(e) By part d above, PyPy is the first segment in the trajectory. By symmetry, the angle of

incidence of this line segment at Py is also equal to
(5)°
n

the angle of reflection off of Py i

s also

(%)o, so by the law of reflection,

. Therefore, by another application of part

d, the path hits Py;. This repeats until we hit Py again. Therefore, we see we need to
find the minimum ¢ such that ck = 0 (mod n). This value always exists (for instance
¢ = n will always work). Therefore the path is periodic. The combinatorial period is
simply the minimum value of ¢. Since ¢ is minimal and k is fixed, and n|ck, we see that
ck must be lem(k,n), since it is the lowest possible value that is a multiple of both &

and n. Therefore c is simply

lem(n, k)

k

, and we are done. Another answer which is
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_n
ged(n, k) |

equivalent is

5. (a) [1] Draw out the periodic trajectory on the 3-billiards table starting at the point (1,0)
and moving at an angle of 30° from the base.

(b) [1] Draw out the periodic trajectory on the 5-billiards table starting at the point (%, 0)
and moving at an angle of 54° from the base.

(c) [6] Consider an n-billiards table 7" with n odd. Suppose we label the vertices of T" with
Ay, Ag, ..., A, starting at the topmost vertex moving clockwise. Let P be the midpoint
of the base. Show that there exists a point ¢ on A; A such that /PQA; is a right angle.

(d) [2] Show there exists a periodic trajectory of combinatorial period 4 on any n-billiards
table with n odd.

Solution to Problem 5:

(a) This trajectory has combinatorial period

(c) Solution 1: Inscribe the polygon in a circle. Let O be the center of that circle. Then
ZA10 A, is 259° and the triangle AOA; A, is isosceles. Drop an altitude from O to A; As

n

called @Q’. Now, extend line A;O through point P to point R on the other side of the
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circle. Then, ARAyA; is a right angle and ARA3A; and AOQ' Ay are similar. Now, we
can move point O towards point R and grow triangle AOQ’A; into triangle ARAsA;.
At some point this growth will hit point P, which will have a corresponding point ) on
the segment )’A,. By similarity, this will yield a point @) such that PQA; is a right
angle.

Here is an example of the phenomenon with a regular heptagon:

Let the special point from the previous problem be called (). Now, take the trajectory
starting at the midpoint of the base to Q. Since the angle is exactly 90°, after hitting
the opposing edge, the trajectory will reflect right back to @) at some angle 8. Since the
polygon is regular, it has reflectional symmetry. Therefore, once hitting ), the same
exact path will happen—this time reflected—on the other half of the polygon. Once it
returns, this cycle will repeat. The path hit a total of 4 edges before repetition, so this
is a periodic path of period 4.

6. Consider billiards table formed by the right triangle A ABC with pockets at its corners below
(not to scale). The base is AC.

(a)
(b)

[4] Draw the periodic trajectory starting at midpoint P of AC and moving at an 18°
angle relative to segment AC.

[6] Let T' be a table constructed from any right triangle AABC with pockets at its
corners. Show that T" has a periodic trajectory with combinatorial period 6.

Solution to Problem 6:
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(a)

(b)

The combinatorial period is @

Define M as the midpoint of the shortest leg of the right triangle across an interior
angle . WLOG we will assume this leg to be AC. Orient the right triangle as seen in
the diagram such that the shortest leg is the base of the triangle and the longest leg AB
is on its left.

Consider point D such that D is on BC and ZCMD = «. Similarly, consider point E
on AD such that ZAME = «. Finally, consider point F on BC such that ZEFC = 90°.
Now, by some angle chasing, we see that /PDC = 90°, and /PEA = /FEB = 90° —a.
Thus the path moving from P to D to P to E to F to E to P follows the law of reflection
and is periodic with combinatorial period 6.

Note: we need to check that E is actually on segment AB, not just its line extension.
Since AC is the shortest side, we see that « is the smallest angle. Thus, since AAME ~
AABC, AFE is smaller than AM. So AE < AM < AC' < AB, and we conclude F is on
segment AB.

You might be wondering why we need to show this: try to think of what happens if M
is the midpoint on the longest side of the triangle instead.

7. This problem is an extension of problem 4. We highly recommend doing it before attempting
this one.

(a)

[1] Draw the following trajectory: a periodic trajectory on the 3-billiards table starting
at the point (%, 0) and moving at an angle of 60°. Compute its combinatorial period?

[1] Draw the following trajectory: a periodic trajectory on the 5-billiards table starting
at the point (g, 0) and moving at an angle of 72°. Compute its combinatorial period?

[6] Consider an n-billiards table. Show that for any point p on the base (not including
pockets), any non-degenerate trajectory starting from p moving at an angle of (%)o
is periodic, where 0 < k < n and k is an integer.

[2] Consider an n-billiards table. Show that for any point p in the interior of the table
(not including edges or pockets), any non-degenerate trajectory starting from p moving
at an angle of (%)O from the base is periodic, where k is any integer.

Solution to Problem 7:

(a)

This has combinatorial period @
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R

(b) This has combinatorial period

(¢) We know that by problem 4, if p is the midpoint of the base, this is true. Let T" be the
periodic trajectory from the midpoint of the base with the same angle. Let us examine
what happens as we move M towards p, while maintaining the initial direction of the
trajectory. For notation, let P be the trajectory of p.

Let Ty = M and 17 be the first two points on the periodic trajectory 17" with Ty on
side AgBg and T; a midpoint on side A;B; such that A; is to the left of B;. Since
/ToT1 Ay = £/ThTyAg, we see that ToT1||AgA; and similarly with ByBi. Thus, moving
Ty towards Ag while maintaining the direction of the trajectory moves 17 towards A;
and similarly with BoB;. Therefore, for any point Py on AgBy that has a trajectory
aligned with T, its second point P; is on A1B; and PyP; is parallel to TyT}.

Let PyP, where Py = P be the first segment of the trajectory of P. Then PyP; by the
logic above is parallel to ToT; and P is on A;B;. As such, it reflects off of A;B; at
point P; in a trajectory that must be parallel to T;T5. Continuing like this, we see that
the points Py ... P, hit the same sides in the same order as Ty ... T,, for any n.

Now, let d; be the distance from P; to the clockwise vertex on its edge (that is, the
vertex / pocket the P;’s side on the billiards table going clockwise). Looking at PyP; we
see that it is parallel to AgA; and, by symmetry it in fact forms an isosceles trapezoid.
However, we see that since A is to the left of Py which is on the base, AgPy = dy. But
since A; is to the left of Pj, it is not clockwise from P;, and thus A;P; = 1 — d;. Since
the two distances are equal (by the properties of an isosceles trapezoid), di = 1 — dj.
Repeating this for all edges in the periodic path, we see that the distances alternate.

Now, suppose 1" has a combinatorial period k that is even. Then P hits the same sides
as T and the distances alternate with period 2. Thus, since k is even, after k reflections,
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we reach a point ) that is on the same edge as p and that is the same distance away
from its clockwise vertex as p, and so (Q = p and the path is periodic with period k.

Now if k is odd, then after k reflections, we reach a point () that is on the same size as
p but instead with distance 1 — dy. However after 2k reflections, we reach a point Q' on
the same side as P with the same distance away from its clockwise vertex as p. Thus
Q' = p and so P is periodic with period 2k.

Thus, the path P is periodic.

Since the trajectory is non-degenerate, let us rewind until it starts on the table at point

Q. Now, rotate the table such that () is on the base. Since p was traveling at an angle
(180k)° 360p ) °
n

o where

with the original base, and we rotated the table by an angle of (

p is some integer. The rewinded trajectory is still traveling at an angle of (%)O with
the new base. However, in this case we know that 0 < k < n, since the trajectory would
have been horizontal had k£ = 0 or k = n, implying that p is not on the interior of the
table. Thus, we may apply part c to see that the trajectory is periodic.
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Unfolding Billiards Tables

One way to analyze trajectories on Billiard tables is through a technique called unfolding. Let us
illustrate this phenomenon with a simple example. Consider the 4-billiards table trajectory that
starts on the midpoint of the left edge reflects off of the right most edge and enters the bottom
left pocket. If we were to reflect the shape (or unfold the shape) over the right-most edge, the

trajectory would become a straight line!

Example. We will show how to unfold a square billiards table into larger rectangular one.

Start \ Start \O
040 ° ;\‘o

The starting Billiards Table After reflection across the rightmost edge.

This holds true for any billiards table! In general, once you unfold a billiards table, it becomes
another billiards table, where the edge that was reflected over disappears. Similarly, unfolding a
periodic trajectory always yields another periodic trajectory and vice versa. We can also unfold

multiple times over before deleting the edges.
c
/n

.4
\
\
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\
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R
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Figure 5: First unfolding over edge b to create tables and then over edge a on the newly reflected

shape.

8. Let us apply unfolding to actual billiard paths. Compute the quantities associated with the
following degenerate trajectories:

O Start *

(A): [5] The value of tan(#) on the 3-Billiards Table. Note that the trajectory starts at the midpoint
of the base. Remember the triangle has unit side lengths.

Solution to Problem 8:
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Start

(B): [5] The length of the above trajectory on the 5-Billiards table. Note that the trajectory starts
at the midpoint of the base. Note: cos(108°) = 1%4‘/5. Remember the pentagon has unit side

lengths!

(a) We apply unfolding:

Since tan @ is the opposite over adjacent, we simply need to determine those two quan-

tities. We see that the opposite is two triangle heights or 2 - @ The adjacent is 1.5

2V/3
3 |

lengths of the base which is % Thus our tangent is

(b) Unfolding we have:

From here it is clear that there are two similar triangles in ratio 1 : 2. Thus the length
of the trajectory is three times the length of the segment between the two white dots.

We use the law of cosines to compute this value as:
s 1 1

1
=—+_-—2- 108°
5 1t 6cos(()8)
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1 /
This yields s = % 10 + 34/5 so our answer is 3s or 3 10+ 3v5
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9. [10] Consider table T' and edge e. Consider the unfolding transformation U : T — R that
reflects T' over edge e and then deletes edge e. The resulting reflected table that consists of
two copies of T', with one reflected, is R.

Now consider a periodic path P on table T that has combinatorial period k, and hits edge e
exactly n times. Determine, with proof, the combinatorial period of U(P) on R. You may
assume 7' is a convex polygon with pockets solely at its corners.

Solution to Problem 9:

First, we partition R into 7" and T where T" is the reflected copy of T. Suppose P hits edge e
at times t1...t,. There are two cases, depending on whether n is even or odd. Let the period
of P be C.

Upon reflection, if n is even we see that the unfolded path U(P) must alternate between T'
and 7" an even amount of times precisely at the times where it hits edge e or t1...t,. In this
case, since the path is periodic and follows the law of reflection, upon hitting ¢,, U(P) must
follow the same path as P from time ¢, to C, thus it has the same period as P. In this case,
the combinatorial period is k — n since edge e does not exist on R and we have to remove n
edges.

If n is odd, then we still hit all kK — n points, but at time C' we are on copy T”, and thus
at the corresponding point of the starting point P(0) on 7”. Thus, by symmetry of the
construction, continuing on for another k£ —n hits, we will reach the original P(0) on 7. Thus
the combinatorial period is 2k — 2n.

We can repeatedly unfold a shape until it becomes a larger, more familiar billiards table. It so
turns out that the equilateral triangle unfolds into a regular hexagon, so extending a trajectory on
the equilateral triangle, we have:

Figure 6: The Unfolded Trajectory of an Equilateral Triangle

10. Demonstrate how to unfold the following billiard tables into their corresponding shapes. Give
a diagram that explains how this is done. This need not be rigorous.

(a) [3] A 45° —45° —90° triangle to a square.
(b) [3] A 36° — 90° — 54° triangle to a pentagon.

(c) [4] A 36° — 36° — 108° triangle to a 5-pointed star with 72° internal angles and 144°
external angles.
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Solution to Problem 10:

(a) Solution:
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(b) Solution:

(¢) Solution:

5o
A‘f-‘.‘» °

11. Suppose you have a billiards table 7" that is a (%)o —90° — (W)O right triangle with
pockets at its corners. Orient the triangle such that the side directly opposite the (%)o
angle is the base.

(a) [3] Show that T' can be unfolded into a regular n-gon.

(b) [3] Show that if n is even, then starting from any point on the base (not including
pockets) of T'; any non-degenerate trajectory moving vertically upward is periodic.

(c) [4] Determine the combinatorial period of the above trajectory in terms of n where n is
even. Justify your answer.

Solution to Problem 11:

(a) Solution 1: We start by unfolding the triangle along its longest leg. Then, we take the
reflected triangle and unfold it along its hypotenuse. We continue alternating between
the longest leg and the hypotenuse until we do a total of n unfoldings. Doing this
repeated operation rotates the triangle around the apex point across from the original
triangle’s longest leg. In fact, after unfolding n times, this angle is now 180°. Thus, we
have unfolded to half of a regular n-gon. At this point, we delete all the internal edges
we have unfolded.

Next, we unfold over the horizontal edge to give us the full n-gon.

Solution 2:

Another way to do this is to unfold the triangle into a half-n-gon and then unfold
the half n-gon into the full n-gon. This is cone by unfolding along the longest leg and
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hypotenuse repeatedly until the central angle reaches 180°. We know this can be done
since the angle itself is 171@ degrees and so unfolding n times along that angle yields the
result. Then, we unfold along the large edge created by the 180 degree unfolding to
create the regular n-gon.

(b) Given that we can unfold the triangle into a regular n-gon and n is even, any non-
degenerate trajectory will hit the top edge of the regular n gon and come right back
down with a period of 2 on the unfolded n-gon. Since periodic trajectories on unfolded
tables correspond to periodic trajectories on the table itself, thetrajectory on the triangle
is periodic.

(c) First, since we are moving vertically upwards, if this trajecotry is periodic, it must come
back onto itself in order to be consistent with the law of reflection. Similarly, in order to
come back onto itself, it must reflect off of another horizontal line. We can use unfolding
to determine when the first horizontal line will be.

Let us iteratively fold the table T as we move up along the base. Doing this starts
to produce the regular n-gon folding discussed in parts a and b. As we unfold moving
vertically, the path stays straight while the triangle unfolds as we cross an edge. The
first time this path hits a horizotnal line is exactly at the half n-gon diameter of the
polygon. It then comes immediately back down for the process to be repeated again.

On the unfolded half n-gon the period is 2. It then reflects back down onto the base.
If we included the reflected edges, along the way it hits § — 1 edges going both up and
down. Finally we must include the point at which it hits the top edge of the half n-gon

and the time at which it returns to the base, for a total combinatorial period of [n].

Challenge Problems

These problems all use techniques and tools built up in the power round as main ideas, but you
will have to use your own creativity to finish them off. Good luck!

12. (a) [5] Show that a non-degenerate trajectory on the 4-billiards table is periodic if and only
if it has a rational or undefined slope.

(b) [4] Suppose the slope of a non-degenerate trajectory on the 4 billiards table is rational

and can be written as the reduced fraction ¢. Determine, with proof, its combinatorial

2.
period (in terms of a and b).
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Figure 7: Here is an example of a periodic path of period 6 on a regular hexagon and its corre-
sponding path on the triangle

()

[1] Compute the combinatorial period of a non-degenerate trajectory with slope %.

Solution to Problem 12:

(a)

(b)

()

First we prove the if direction. If the slope is undefined, then the path must be vertical
and we’ll just bounce up and down with period 2. Else the slope is rational. WLOG
assume the start point is on an edge (we can do this because we can just follow the
trajectory until we hit an edge). Say we start at (x,0).

Do a BIG number of unfoldings. We can see that any reflected square shifted from
the original square by an even number of horizontal and vertical shifts will be in the
same orientation as the original square, with the “new starting point” at a location of
(v+21,2j) for integers 7, j. Then, assuming the slope is ”* we pass through (z+2n,2m),
and at this point the path must repeat itself because the orientation of this shifted square
is the same as that of the original square. Thus, the trajectory is periodic.

For the converse, do the BIG unfoldings again. Because the trajectory is periodic, with
period C, after time C, we must reach the starting point of a reflected square with
the same orientation as the original, say (x + 2n,2m). Then the path we take can be
considered to be a straight line from (z,0) to (x 4+ 2n,2m) and thus the slope is either
undefined (vertical) or rational.

Since we are going from (z,0) to (x + 2a,2b) we are hitting exactly 2|a| vertical edges
and 2|b| horizontal edges (taking into account that a or b could be negative), for a total

combinatorial period of | 2|a| + 2[b] |

The answer is 2 - 2020 + 2 - 2021 = | 8082

13. The Golden L is a billiards table that looks as follows:

[10] Show that any periodic trajectory on the golden L has either an undefined slope, or a
slope of the form a 4+ b¢ where a,b € Q where Q is the rational numbers and ¢ is the golden

ratio (

127‘/5) As before pockets are black dots. Hint: Rewind and track the horizontal and

vertical distances separately.

Solution to Problem 13:

Similar to the last problem, we see that if the path is horizontal or vertical then we are done
with a period of 2. So, WLOG assume that the slope is non-zero and not undefined. As a
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result, it has a defined reciprocal.

Now, let us imagine unfolding the Golden L as we travel along a path. This yields a straight
ray that represents the path. Eventually, as we unfold we will reach a point that corresponds
to the original point, but after a single period. Since all the sides are either horizontal
or vertical, the horizontal distance traveled within the shape is the same as the horizontal
distance traveled on the ray, and similar with the vertical distance.

The slope of this line is therefore the absolute value of the vertical distance traveled over the
absolute value of the horizontal distance traveled. We only need compute these two quantities
to calculate the slope.

Since the slope is non-vertical, it must hit the left-most edge. Therefore, we rewind the path
until we hit the edge. From the left most edge, we can hit either of the two rightmost edges
so we travel either 1 or ¢ distance. Similarly once we hit the rightmost edges we travel either
1 or ¢ distance to get to the left edge. So therefore the vertical distance traveled is oy + 81¢
for some integer constants oy, 51. By symmetry the vertical distance traveled is also ag + S2¢
for some integer constants as and [s.

a1+81¢
ag+f2¢"

we get Bad? — Bag — aah + i + ¢ for some rational constant c. This is 3(¢? — ¢) + ¢ which
is 3 + ¢, rational number, since ¢? — ¢ = 1.

Therefore the slope is Multiplying by k = ¢— % by the expression on denominator,

Thus, if we multiply by k£ on both the top and bottom we get a number of the form a + b¢
where a and b are rational numbers and we are done.

[10] Let T be a billiards table that is an acute triangle with pockets at its corners. Show that
T contains exactly two periodic trajectories of combinatorial period 3. Note that trajectories
that are rewinds or fast-forwards of each other are considered the same in this case.

Solution to Problem 14:
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First, if T is a periodic trajectory with combinatorial period 3., it must be an inscribed
triangle with vertices on separate edges of the triangle. Otherwise, T" would hit the same
edge twice in a row, which is not possible, since then it would hit a pocket and be degenerate.

Thus we may assume T corresponds to ABC a triangle. Thus, WLOG, assume A on DE,
B on EF and C on FD with angles a, b, ¢ being the measures of /BAC, ZACB, and/BCA.
We will show uniqueness of this triangle in ADEF. The triangle shape will then give exactly
two solutions corresponding to the clockwise and counterclockwise methods of traversal.

We will first show that AABC' is the orthic triangle of ADEF (i.e the triangle made up of
the foot of the altitudes). Since the orthic triangle is unique via construction for any given
triangle, this will show that the periodic path is unique.

To show that AABC is orthic , we simply need to show that DB is an altitude of ADEF.
Then, by symmetry the same will hold for the altitudes. First, since AABC is a periodic
trajectory, it follows the law of reflection. Thus, the angle bisector of A is perpendicular to
DE and similarly for the other sides.

Let the incenter of AABC be K which is the concurrent intersection point of angle bisectors
of AABC'. Consider quadrilateral DAKC. It has right angles at A and C, so this is a cyclic
quadrilateral.

Thus, ZKAC = ZDKC = §. Thus angle ZDKC' is 90 — §. We now compute ZCK B. This
by angle chasing is simply 180 — % = 180 — % = 90 + § Thus, ZDKB is 180 and so
since KB is perpendicular to FF so is DB. Thus, DB is an altitude and the triangle is the
orthic triangle.

Now, we have shown that the triangle traced out by the periodic trajectory is equivalent to the
orthic triangle of the acute ADFEF. We simply need to show such an orthic triangle exists.
However, this is easy. Since ADFEF is acute, the altitudes of ADEF are fully contained in
ADEF. Thus, by convexity of a triangle, the orthic triangle exists.

Thus, the periodic path exists and is unique.

15. For this problem, we will need a couple of tools:
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Definition. Define a simple billiards table be a convex polygon with pockets at its corners.

Theorem. For any simple billiards table, if you are given a line segment that starts at point
Pi on ey and ends at point Py on es, and Py, Py are not pockets, then there exists an € such
that if you translate Py Py in a direction perpendicular to the slope of@ any t < € and
extend/crop it to line segment P{PL with P! on ey and P} on ey, the line P{ P} never contains
a pocket.

[10] Show that for any periodic trajectory with odd combinatorial period p on a simple
billiards table, there exists a periodic trajectory with combinatorial period 2p.

Solution to Problem 15:

Solution 1: Let the periodic trajectory be Tp...T, where T, = Ty. Let Ty be on line
segment AB and orient the table so AB lays horizontally. Since the trajectory is periodic,
it cannot lay entirely on an edge (since otherwise it would hit a pocket and be degenerate).
Thus the trajectory points at a different direction than horizontal.

Imagine traveling along the periodic path, unfolding the table as you go until you return back
to the corresponding starting point. Let the corresponding points to Ty . .. T}, on the unfolded
trajectory be Qq...Q,. Since the combinatorial period is odd, we would have unfolded an
odd number of times. Entering the shape after an odd number of unfoldings, which are the
same as reflections, reveals that the shape has a reverse orientation. That is, the vertices of
the billiards table go clockwise instead of counter clockwise. Since (), corresponds to (o, we
let Q, be on line segment A’B’.

Since we had unfolded along the path, we see that the path itself did not change direction, so
we see that the reverse orientation is exactly the orientation that we would get if we reflected
the original billiards table over the line TyT}.

Now, let us continue unfolding for another p times yielding Q11 ... Q2, until we return to
the original point a second time. This time, however since we have reflected 2p times, the
orientation is the same as the original billiards table. So let 2, be on A”B".

Now, each Q;Q;+1 is a segment on the line QoQ2, and is also a singular segment on the
1th reflected shape. As such by the theorem stated in the problem, if we shift each segment
separately there exists €g...€g,—1 such that for t < ¢;, Q;Q;4+1 can be translated perpendicularly
without containing a pocket.

Let €* be the minimum of all the ¢;. Then, suppose we translate the extended line QoQ2,
orthogonally to the right by some ¢ < €*, to RoRa, towards point A. This line hits the same
edge of the same shape at points Ry[Rg,, such that Ry = Ra,. Thus, this trajectory has a
combinatorial period of at most 2p. We need now show that it does not have a period of p.

Consider R, which was orthogonally transported from @,. The orientation of the table from
Qp to Qp+1 is flipped and so is the orientation of A'B’ relative to AB. In fact, A/B’ is AB
flipped over QoQp. Thus translating Qo@Q, to the shits the line towards B but since A'B’ is
reflected, it shifts R, towards A’. Thus there is no correspondence between R, and Ry since
they are on different positions on the table. So the period can no longer be p.

Therefore there exists a path with combinatorial period 2p.




BMT 2020 PowER ROUND SOLUTIONS OCTOBER 3 — 4, 2020

Solution 2: (From CCA #1 )

Suppose the reflections that the ball undergoes in one period are at point ()1 on side [1,Q2
on side ly, ... and @, at [,, in that order. For all k € {1,2,...,p}, let 6; be the angle between
the path of the ball (taken either immediately before or after reflecting off of I, which are
the same by the law of reflection). For the remainder of this proof, consider the indices of [,
Q@ , and 0 in modulo p.

Suppose the polygon is Pi P> ... P, , where vertices are listed in counterclockwise order. Direct
the lengths of segments on the perimeter such that if XY is a subsegment of P;P;,1 , where
indices are taken modulo n,XY = €| XY| , where e = 1 if XY and P;P;;1 point in the same
direction, and ¢ = —1 otherwise. For the remainder of the proof, consider the indices of P
modulo n. Now, fix a small constant d that we will specify later, take the sequence of points

Ri, Ry ... Ry, such that Ry is on [ and QpRy, = (—1)’“%.

Note that all of these points are distinct, since if ; and R; with ¢ < j are on the same side,
then we have j = ¢ + p, implying that Q; R; and Q;R; = Q;R; have different signs. Consider
the indices of R in modulo 2p for the remainder of the proof.

We claim that R, Rq+1||QaQa+1 for all a. Since a and a+ 1 have different parities, Q, R, and
Qa+1Ra+1 have different signs, so R, and R, are on opposite sides of Q,Qq+1 - Furthermore,
the distances from R, and Rg41 to QuQq+1 are |QqRy|sin(f,) = d and |Qqt1Ra+1|sin(0g+1) =
d, implying that they are parallel. Also, note that this doesn’t depend on a, so if we take
the value of € given by the given theorem for the union of the segments in the path with
reflections at the @);, it suffices to take d < e.

Now, since [, externally bisects ZQ,-1Q.Qq+1 and we have that Qq,—1Qq||Re—1R, and
Qa+1Qa||Ra+1Ra, we get that I, externally bisects /R, 1R,Rq+1 for all a. This implies
that the path starting at some point on RjRs and starting to move along R;Rs only has
reflections at the points R1, Ra, ..., Rg, once each, implying the result.




