Time limit: 60 minutes.

Instructions: This test contains 10 short answer questions. All answers are positive integers. Only submitted answers will be considered for grading.

No calculators.

- 1. A Yule log is shaped like a right cylinder with height 10 and diameter 5. Freya cuts it parallel to its bases into 9 right cylindrical slices. After Freya cut it, the combined surface area of the slices of the Yule log increased by $a\pi$. Compute a.
- 2. Let O be a circle with diameter AB = 2. Circles O_1 and O_2 have centers on \overline{AB} such that O is tangent to O_1 at A and to O_2 at B, and O_1 and O_2 are externally tangent to each other. The minimum possible value of the sum of the areas of O_1 and O_2 can be written in the form $\frac{m\pi}{n}$, where m and n are relatively prime positive integers. Compute m + n.
- 3. Right triangular prism ABCDEF with triangular faces $\triangle ABC$ and $\triangle DEF$ and edges $\overline{AD}, \overline{BE}$, and \overline{CF} has $\angle ABC = 90^{\circ}$ and $\angle EAB = \angle CAB = 60^{\circ}$. Given that AE = 2, the volume of ABCDEF can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute m+n.

4. Alice is standing on the circumference of a large circular room of radius 10. There is a circular pillar in the center of the room of radius 5 that blocks Alice's view. The total area in the room Alice can see can be expressed in the form $\frac{m\pi}{n} + p\sqrt{q}$, where m and n are relatively prime positive integers and p and q are integers such that q is square-free. Compute m + n + p + q. (Note that the pillar is not included in the total area of the room.)

5. Let $A_1 = (0,0), B_1 = (1,0), C_1 = (1,1), D_1 = (0,1)$. For all i > 1, we recursively define

$$A_{i} = \frac{1}{2020} (A_{i-1} + 2019B_{i-1})$$

$$B_{i} = \frac{1}{2020} (B_{i-1} + 2019C_{i-1})$$

$$C_{i} = \frac{1}{2020} (C_{i-1} + 2019D_{i-1})$$

$$D_{i} = \frac{1}{2020} (D_{i-1} + 2019A_{i-1}),$$

where all operations are done coordinate-wise.

If $[A_iB_iC_iD_i]$ denotes the area of $A_iB_iC_iD_i$, there are positive integers a, b, and c such that

$$\sum_{i=1}^{\infty} [A_i B_i C_i D_i] = \frac{a^2 b}{c},$$

where b is square-free and c is as small as possible. Compute the value of a + b + c.

- 6. A tetrahedron has four congruent faces, each of which is a triangle with side lengths 6, 5, and 5. If the volume of the tetrahedron is V, compute V^2 .
- 7. Circle Γ has radius 10, center O, and diameter \overline{AB} . Point C lies on Γ such that AC=12. Let P be the circumcenter of $\triangle AOC$. Line \overrightarrow{AP} intersects Γ at Q, where Q is different from A. Then the value of $\frac{AP}{AQ}$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute m+n.
- 8. Let triangle $\triangle ABC$ have AB=17, BC=14, CA=12. Let M_A, M_B, M_C be midpoints of \overline{BC} , \overline{AC} , and \overline{AB} respectively. Let the angle bisectors of A, B, and C intersect \overline{BC} , \overline{AC} , and \overline{AB} at P, Q, and R, respectively. Reflect M_A about \overline{AP} , M_B about \overline{BQ} , and M_C about \overline{CR} to obtain M'_A, M'_B, M'_C , respectively. The lines $\overrightarrow{AM'_A}$, $\overrightarrow{BM'_B}$, and $\overrightarrow{CM'_C}$ will then intersect \overline{BC} , \overline{AC} , and

 \overline{AB} at D, E, and F, respectively. Given that \overline{AD} , \overline{BE} , and \overline{CF} concur at a point K inside the triangle, in simplest form, the ratio [KAB]:[KBC]:[KCA] can be written in the form p:q:r, where p,q and r are relatively prime positive integers and [XYZ] denotes the area of $\triangle XYZ$. Compute p+q+r.

- 9. The Fibonacci numbers F_n are defined as $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for all n > 2. Let A be the minimum area of a (possibly degenerate) convex polygon with 2020 sides, whose side lengths are the first 2020 Fibonacci numbers $F_1, F_2, \ldots, F_{2020}$ (in any order). A degenerate convex polygon is a polygon where all angles are $\leq 180^{\circ}$. If A can be expressed in the form $\frac{\sqrt{(F_a-b)^2-c}}{d}$, where a, b, c and d are positive integers, compute the minimal possible value of a+b+c+d.
- 10. Let E be an ellipse where the length of the major axis is 26, the length of the minor axis is 24, and the foci are at points R and S. Let A and B be points on the ellipse such that RASB forms a non-degenerate quadrilateral, \overrightarrow{RA} and \overrightarrow{SB} intersect at P with segment \overline{PR} containing A, and \overrightarrow{RB} and \overrightarrow{AS} intersect at Q with segment \overline{QR} containing B. Given that RA = AS, AP = 26, the perimeter of the non-degenerate quadrilateral RPSQ is $m + \sqrt{n}$, where m and n are integers. Compute m + n.