
BMT 2020 Algebra Test Solutions October 3 – 4, 2020

1. Marisela is putting on a juggling show! She starts with 1 ball, tossing it once per second.
Lawrence tosses her another ball every five seconds, and she always tosses each ball that she has
once per second. (Marisela tosses her first ball at the 1st second, and starts tossing the second
ball at the 6th second. Tosses at the 60th second also count.) Compute the total number of
tosses Marisela has made one minute after she starts juggling.

Answer: 390

Solution: In the first five seconds, Marisela has one ball, so she makes 5 · 1 = 5 tosses. In the
next five seconds, she has two balls, making 5 · 2 = 10 tosses. The total number of tosses is

5 · 1 + 5 · 2 + 5 · 3 + · · ·+ 5 · 12 = 5 · 12 · 13

2
= 390

since there are 60 = 5 · 12 seconds in a minute.

2. Let a and b be the roots of the polynomial x2 + 2020x+ c. Given that
a

b
+
b

a
= 98, compute

√
c.

Answer: 202

Solution 1: (Vieta’s formulae.) We have that a+ b = −2020 and ab = c by Vieta’s formulae.
This gives us

a

b
+
b

a
=
a2 + b2

ab
=
a2 + 2ab+ b2

ab
− 2 =

(a+ b)2

ab
− 2 =

20202

c
− 2 = 98.

Now we can solve for c to find

c =
20202

100
=⇒

√
c =

2020

10
= 202

which is our answer.

Solution 2: (Calculation of roots.) We use the quadratic formula to find the roots

a =
−2020 +

√
20202 − 4c

2
= −1010 +

√
10102 − c

b =
−2020−

√
20202 − 4c

2
= −1010−

√
10102 − c,

where we chose the plus and minus signs arbitrarily. Now we have

a

b
+
b

a
=
−1010 +

√
10102 − c

−1010−
√

10102 − c
+
−1010−

√
10102 − c

−1010 +
√

10102 − c
.

We rationalize both denominators by multiplying by conjugates to yield

a

b
+
b

a
=

(−1010 +
√

10102 − c)2

c
+

(−1010−
√

10102 − c)2

c

=
10102 − 2020

√
10102 − c+ 10102 − c+ 10102 + 2020

√
10102 − c+ 10102 − c

c

=
4 · 10102 − 2c

c
=

20202

c
− 2 = 98,

and now we can solve for c as in solution 1 to yield
√
c = 202 .
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3. The graph of the degree 2021 polynomial P (x), which has real coefficients and leading coefficient
1, meets the x-axis at the points (1, 0), (2, 0), (3, 0), . . . , (2020, 0) and nowhere else. The mean
of all possible values of P (2021) can be written in the form a!/b, where a and b are positive
integers and a is as small as possible. Compute a+ b.

Answer: 2023

Solution: Since P (x) has degree 2021 and has real roots 1, 2, . . . , 2020, the 2021st root must
also be real and hence be an element of the set {1, 2, . . . , 2020}. That is, one of the numbers
1, 2, · · · , 2020 is a double root. Let this double root be r. Then

P (x) = (x− 1)(x− 2) · · · (x− 2020) · (x− r),

so
P (2021) = 2020 · 2019 · 2018 · · · · · 1 · (2021− r) = 2020! · (2021− r).

Because r is taken from {1, 2, · · · , 2020}, the average of the possible values of P (2021) is

1

2020
·
2020∑
r=1

2020!·(2021−r) =
1

2020
·2020!·(2020+2019+· · ·+2+1) =

1

2020
·2020!·2020 · 2021

2
=

2021!

2
.

Hence, we have a = 2021 and b = 2, and a+ b = 2021 + 2 = 2023 .

4. Let ϕ be the positive solution to the equation

x2 = x+ 1.

For n ≥ 0, let an be the unique integer such that ϕn − anϕ is also an integer. Compute

10∑
n=0

an.

Answer: 143

Solution 1: The main tool for this problem is the fact that ϕ2 = ϕ+1. If we let bn = ϕn−anϕ,
we have

ϕn = anϕ+ bn =⇒ ϕn+1 = anϕ
2 + bnϕ = (an + bn)ϕ+ an.

We can see now (with the additional note that b1 = a0) that bn = an−1 for all n, so we have the
recurrence an+1 = an+an−1, meaning that the sequence (an) is actually the Fibonacci sequence
with a0 = 0, a1 = 1. We can calculate the answer directly as

10∑
n=0

an = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143 .

Solution 2: We can look at the partial sums

0, 1, 2, 4, 7, 12, 20, 33, · · ·

and realize that they are one less than the Fibonacci numbers, which leads us to

10∑
n=0

an = a12 − 1 = 143
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yet again. More generally, we can prove the identity

n∑
k=0

ak = an+2 − 1

by observing
n∑
k=0

ϕk =

(
n∑
k=0

ak

)
ϕ+

(
1 +

n−1∑
k=0

ak

)
and

n∑
k=0

ϕk =
ϕn+1 − 1

ϕ− 1
=
ϕn+1 − 1

1/ϕ
= ϕn+2 − ϕ,

whence

ϕn+2 = ϕ+

n∑
k=0

ϕk =

(
1 +

n∑
k=0

ak

)
ϕ+

(
1 +

n−1∑
k=0

ak

)
.

Now, because there is only one way to write ϕn+2 as aϕ+ b with a, b ∈ Z (this was given to us
in the problem but also follows directly from the fact that ϕ is irrational), we must have that

an+2 = 1 +
n∑
k=0

ak =⇒
n∑
k=0

ak = an+2 − 1

as desired.

5. Let f : R+ → R+ be a function such that for all x, y ∈ R+, f(x)f(y) = f(xy) + f

(
x

y

)
, where

R+ represents the positive real numbers. Given that f(2) = 3, compute the last two digits of

f
(

22
2020
)

.

Answer: 47

Solution: Observe that, setting x = y, we have

f(x)2 = f(x2) + f(1).

Also, setting x = 2 and y = 1 gives

f(2)f(1) = f(2) + f(2),

so 3f(1) = 6 and f(1) = 2. It follows that f(x)2 = f(x2) + 2, so f(x2) = f(x)2 − 2. Using this
recurrence, we find that

f
(

22
0
)

= 3 ≡ 3 (mod 100)

f
(

22
1
)

= 7 ≡ 7 (mod 100)

f
(

22
2
)

= 47 ≡ 47 (mod 100)

f
(

22
3
)

= 2207 ≡ 7 (mod 100)

f
(

22
4
)
≡ 72 − 2 = 47 (mod 100)

f
(

22
5
)
≡ 472 − 2 ≡ 7 (mod 100)

...
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For a even, f
(
22

a) ≡ 47 (mod 100). In particular, for a = 2020, we find that the last two

digits of f
(

22
2020
)

are 47 . For good measure, we show that a function f satisfying the criteria

presented in the problem statement exists. We note that for a, x, y > 0, we have

(
xa + x−a

) (
ya + y−a

)
= (xy)a +

(
x

y

)a
+
(y
x

)a
+

(
1

xy

)a
= (xy)a + (xy)−a +

(
x

y

)a
+

(
x

y

)−a
,

so the function
f(x) = xa + x−a

satisfies the given functional equation whenever a is positive (a could be negative as well, but
since a and −a yield the same function f , we can assume just as well that a > 0). Now we need
only solve for a such that f(2) = 3. This gives

3 = 2a + 2−a =⇒ (2a)2 − 3 (2a) + 1 = 0 =⇒ 2a =
3±
√

5

2
.

Only one of these roots makes a > 0, so we have

a = log2
3 +
√

5

2
= 2 log2 ϕ,

where ϕ is the golden ratio. Hence, the function

f(x) = x2 log2 ϕ + x−2 log2 ϕ = ϕ2 log2 x + ϕ−2 log2 x

satisfies all of the given conditions. This suggests an interesting relationship between the given
function and the Fibonacci numbers that enthusiastic contestants are urged to pursue.

6. Given that
(
n
k

)
= n!

k!(n−k)! , the value of

10∑
n=3

(
n
2

)(
n
3

)(
n+1
3

)
can be written in the form m

n , where m and n are relatively prime positive integers. Compute
m+ n.

Answer: 329

Solution: Notice using Pascal’s identity that(
n
2

)(
n
3

)(
n+1
3

) =

(
n+1
3

)
−
(
n
3

)(
n
3

)(
n+1
3

) =
1(
n
3

) − 1(
n+1
3

) ,
so

10∑
n=3

(
n
2

)(
n
3

)(
n+1
3

) =

(
1(
3
3

) − 1(
4
3

))+

(
1(
4
3

) − 1(
5
3

))+ · · ·+

(
1(
10
3

) − 1(
11
3

))

=
1(
3
3

) − 1(
11
3

)
=

164

165
,

and therefore, our answer is 329 .
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7. Let a, b, and c be real numbers such that a+ b+ c =
1

a
+

1

b
+

1

c
and abc = 5. The value of(

a− 1

b

)3

+

(
b− 1

c

)3

+

(
c− 1

a

)3

can be written in the form m
n , where m and n are relatively prime positive integers. Compute

m+ n.

Answer: 77

Solution: First, we have the identity

x3 + y3 + z3 − 3xyz = (x+ y + z)(x2 + y2 + z2 − xy − yz − zx).

Define

x = a− 1

b
y = b− 1

c
z = c− 1

a

and note that

a+ b+ c =
1

a
+

1

b
+

1

c
=⇒ a− 1

b
+ b− 1

c
+ c− 1

a
= x+ y + z = 0,

so we find
x3 + y3 + z3 = 3xyz.

Replacing x, y, and z with their expressions in a, b, and c yields(
a− 1

b

)3

+

(
b− 1

c

)3

+

(
c− 1

a

)3

= 3

(
a− 1

b

)(
b− 1

c

)(
c− 1

a

)
.

Moreover, notice that(
a− 1

b

)(
b− 1

c

)(
c− 1

a

)
= abc− 1

abc
− a− b− c+

1

a
+

1

b
+

1

c

= abc− 1

abc

= 5− 1

5

=
24

5
.

Thus, (
a− 1

b

)3

+

(
b− 1

c

)3

+

(
c− 1

a

)3

= 3 · 24

5
=

72

5

and our answer is 77 .

We note that the ordered triple

(a, b, c) = (
√

5,−
√

5,−1)

satisfies the conditions of the problem, and(√
5 +

1√
5

)3

+ (−
√

5 + 1)3 +

(
−1− 1√

5

)3

=
72

5

in accordance with the above solution.
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8. Compute the smallest real value C such that the inequality

x2(1 + y) + y2(1 + x) ≤
√

(x4 + 4)(y4 + 4) + C

holds for all real x and y.

Answer: 4

Solution: Consider the vectors ~x = 〈x2 − 2, 2x〉 and ~y = 〈2, y2〉. We have by the triangle
inequality that√

x4 + 4 +
√
y4 + 4 = ||~x||+ ||~y|| ≥ ||~x+ ~y|| = ||〈x2, y2 + 2x〉|| =

√
x4 + y4 + 4xy2 + 4x2.

Squaring both sides of the resultant inequality gives

x4+y4+8+2
√

(x4 + 4)(y4 + 4) ≥ x4+y4+4xy2+4x2 =⇒ xy2+x2 ≤ 2+
1

2

√
(x4 + 4)(y4 + 4).

Applying the same analysis with the vectors 〈y2 − 2, 2y〉 and 〈2, x2〉 yields

yx2 + y2 ≤ 2 +
1

2

√
(x4 + 4)(y4 + 4),

and adding the last two inequalities gives

xy2 + x2 + yx2 + y2 = x2(1 + y) + y2(1 + x) ≤
√

(x4 + 4)(y4 + 4) + 4.

We can observe that setting x = y = 2 attains equality, so the answer is C = 4 .

9. There is a unique unordered triple (a, b, c) of two-digit positive integers a, b, and c that satisfy
the equation

a3 + 3b3 + 9c3 = 9abc+ 1.

Compute a+ b+ c.

Answer: 113

Solution 1: The restriction of a, b, and c to the two-digit positive integers is what primarily
gives us trouble, as we can quickly identify other integrals solutions such as (a, b, c) = (−2, 0, 1)
or (a, b, c) = (4, 3, 2) (this one is not as obvious). We’d like to be able to construct larger
solutions from smaller ones. The method we choose is to make the function a3 +3b3 +9c3−9abc
a multiplicative function of some objects to which we can associate triples (a, b, c). A well-known
multiplicative function is the determinant function on the set of matrices. We associate to the
triple (a, b, c) the matrix a 3c 3b

b a 3c
c b a


because the determinant of this matrix is a3 + 3b3 + 9c3−9abc. The less obvious idea is that the
set of matrices of this form is closed under multiplication and inversion, and these operations
preserve the association between ordered triples and matrices (demonstrating this involves a fair
amount of computation, which we omit). For example, the matrix associated to (−2, 0, 1) is

A =

−2 3 0
0 −2 3
1 0 −2


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As it turns out, A−1 is the matrix associated to (4, 3, 2). Finally, A−2 is the matrix associated to
(52, 36, 25), which then must satisfy the given equation. Hence, we have the answer 56+36+25 =
113 .
Solution 2: We first recall the (somewhat well-known) factorization

x3 + y3 + z3 − 3xyz = (x+ y + z)(x2 + y2 + z2 − xy − yz − zx).

The important step we take is further factoring the right (quadratic) factor above. That is,

x3 + y3 + z3 − 3xyz = (x+ y + z)(x+ ωy + ω2z)(x+ ω2y + ωz)

where

ω = e2iπ/3 = −1

2
+ i

√
3

2

is a complex (primitive, non-real) cube root of unity. This allows us to write

1 = a3 + 3b3 + 9c3 − 9abc = (a+ b
3
√

3 + c
3
√

9)(a+ ωb
3
√

3 + ω2c
3
√

9)(a+ ω2b
3
√

3 + ωc
3
√

9).

Now we make some key observations (or rather, observations that will be sufficient to yield an
answer):

12 = (a+ b
3
√

3 + c
3
√

9)2(a+ ωb
3
√

3 + ω2c
3
√

9)2(a+ ω2b
3
√

3 + ωc
3
√

9)2

= ((a2 + 6bc) + (3c2 + 2ab)
3
√

3 + (b2 + 2ca)
3
√

9)

· ((a2 + 6bc) + (3c2 + 2ab)ω
3
√

3 + (b2 + 2ca)ω2 3
√

9)

· ((a2 + 6bc) + (3c2 + 2ab)ω2 3
√

3 + (b2 + 2ca)ω
3
√

9),

which comes from expanding each square. If we instead multiply the trinomials in pairs, we have

12 = (a+ b
3
√

3 + c
3
√

9)2(a+ ωb
3
√

3 + ω2c
3
√

9)2(a+ ω2b
3
√

3 + ωc
3
√

9)2

= (a2 + abω
3
√

3 + acω2 3
√

9 + ab
3
√

3 + b2ω
3
√

9 + 3bcω2 + ac
3
√

9 + 3bcω + 3c2ω2 3
√

3)

· (a2 + abω2 3
√

3 + acω
3
√

9 + ab
3
√

3 + b2ω2 3
√

9 + 3bcω + ac
3
√

9 + 3bcω2 + 3c2ω
3
√

3)

· (a2 + abω2 3
√

3 + acω
3
√

9 + abω
3
√

3 + b2
3
√

9 + 3bcω2 + acω2 3
√

9 + 3bcω + 3c2
3
√

3)

= ((a2 − 6bc) + (3c2 − 2ab)ω2 3
√

3 + (b2 − 2ac)ω
3
√

9)

· ((a2 − 6bc) + (3c2 − 2ab)ω
3
√

3 + (b2 − 2ac)ω2 3
√

9)

· ((a2 − 6bc) + (3c2 − 2ab)
3
√

3 + (b2 − 2ac)
3
√

9),

so now we have found that if (a, b, c) is a solution to the given equation, then two more solutions
are

(a2 + 6bc, 3c2 + 2ab, b2 + 2ca) and (a2 − 6bc, 3c2 − 2ab, b2 − 2ca).

Now we are fully equipped to find solutions to the given equation. In particular, we can observe
that (−2, 0, 1) is a solution and, plugging these values into the second triple (the one on the
right) above, that (4, 3, 2) is a solution as well. Now we can plug these values into the first triple
(the one on the left) to find that

(42 + 6 · 3 · 2, 3 · 22 + 2 · 4 · 3, 32 + 2 · 2 · 4) = (52, 36, 25)

is a solution as well. We are given that this solution is unique, whence this is the only solution
for a, b, c two-digit positive integers. The desired answer is then 52 + 36 + 25 = 113 .
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Note that the key idea of this problem is that f(x) = a3 + 3b3 + 9c3 − 9abc is a multiplicative
function of x = a + b 3

√
3 + c 3

√
9. In this solution, we have simply shown that squaring x and

reciprocating x preserve that f(x) = 1. Importantly, don’t let the cumbersome algebra above
fool you into thinking that this is not a nice problem - this is a very nice problem! Recommended
reading: number fields and Dirichlet’s unit theorem.

10. For k ≥ 1, define ak = 2k. Let

S =
∞∑
k=1

cos−1

 2a2k − 6ak + 5√
(a2k − 4ak + 5)(4a2k − 8ak + 5)

 .

Compute b100Sc.
Answer: 157

Solution: Although neither factor in the denominator factors nicely, we can observe that

a2k − 4ak + 5 = (ak − 2)2 + 1,

and
4a2k − 8ak + 5 = (2ak − 2)2 + 1 = (ak+1 − 2)2 + 1.

These equations are nicer than what we started with, but we still have to deal with terms of the
form ak − 2. We’d like a nice relation between these numbers, and we have two options:

ak+1 − 2 = 2(ak − 2) + 2

or
ak+1 − 2 = (ak − 2) + ak.

The first relation doesn’t really lend itself to anything nice because of the 2 floating on the right
side. The second relation, however, leads us to consider

ak+1 − 2 =
k∑
i=1

ai.

This is somewhat promising, as the sum we need to evaluate starts at k = 1. Before we run
with this, however, we should attempt to process the numerator of the fraction into something
nice. We could observe the relation between the square of the numerator and the radicand of
the denominator by analyzing roots, or we could simply look at the product (ak − 2)(2ak − 2):

(ak − 2)(2ak − 2) = 2a2k − 6ak + 4

So we can write the numerator as (ak − 2)(2ak − 2) + 1. We are tempted to simply continue our
analysis with this in mind. But this nice expression is a red herring (after all, it doesn’t really
lend itself to any nice geometrical construction, which we’d like to have because of the inverse
cosine). The key observation is that

mn+ 1 =
m2 + n2 − (m− n)2 + 2

2
.
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The motivation for this is the introduction of many squares (which are nice in geometry, partic-
ularly as it relates to trigonometry). The niceness of this becomes even clearer upon recalling
that

(2ak − 2)− (ak − 2) = ak.

So we (finally) rewrite the sum in question, combining all of our prior observations, as

∞∑
k=1

cos−1

 (
∑k−1

i=1 ai)
2 + (

∑k
i=1 ai)

2 + 2− a2k
2
√

(1 + (
∑k−1

i=1 ai)
2)(1 + (

∑k
i=1 ai)

2)

 .

This seems much much worse than what we originally had until we note that, with X as the
square root of the left factor in the radical of the denominator and Y as the square root of the
right factor, the sum takes the form

∞∑
k=1

cos−1
(
X2 + Y 2 − a2k

2XY

)
.

The expression inside the parentheses is simply the cosine of the highlighted angle in the following
triangle using the Law of Cosines!

Y

X

ak

and now the problem takes shape. By the Pythagorean theorem, X is the hypotenuse of a right
triangle with legs 1 and

∑k−1
i=1 ai and Y is the hypotenuse of a right triangle with legs 1 and∑k

i=1 ai. This means that the triangles such as the one above fit together as follows (diagram
clearly not to scale):

1

1 a1 a2 a3

In the triangle above, the angles in our sum are precisely the angles highlighted in gray. The
right side of this triangle extends to infinity (as the series with terms ak diverges), so the shaded

angle approaches
π

2
. It follows that the original sum equals π

2 and our answer is 157 .


