
BMT 2015 Projective Planes 7 March 2015

Time Limit: 60 mins.
Maximum Score: 100 points.
Instructions:

1. All problems require justification unless stated otherwise.

2. You may freely assume results of a previous problem in proving later problems, even if you have not
proved the previous result.

3. You may use both sides of the paper and multiple sheets of paper for a problem, but separate problems
should be on separate sheets of paper. Label the pages of each problem as 1/2, 2/2, etc., in the upper
right hand corner. Write your team ID at the upper-right corner of every page you turn in.

4. Partial credit may be given for partial progress on a problem, provided the progress is sufficiently
nontrivial.

5. Calculators are not allowed!

Introduction: This power round deals with projective planes, which are geometries without parallel lines.
These structures have applications in multiple branches of mathematics: Finite Projective Planes are useful
in Algebra and Combinatorics, and the Real and Complex Projective Planes are useful in Geometry and
Topology. In this round, we will consider special examples of projective planes and also examine just a few
of their properties.
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Introduction to Projective Planes (35 Points)

A projective plane consists of a set of points P , a set of lines L, and an incidence relation I ⊆ P × L. If
(p, l) ∈ I, we say that the point p is incident to the line l (or vice-versa). The incidence relation is required
to satisfy the following properties:

a. Given any two distinct points, there is a unique line incident to both of them. I.e., there is a unique
line through any two points.

b. Given any two distinct lines, there is a unique point incident to both of them. I.e., any two lines
intersect at a unique point.

c. (Non-degeneracy) There are four points, no three of which are incident to the same line.

From now on, for the sake of brevity, we will often use the notation p1p2 to denote the unique line incident
to the points p1 and p2, and we will use the notation l ∩ l′ to denote the unique point incident to the lines
l and l′. However, remember that these “points” and “lines” are just elements of some set, and they don’t
necessarily have to correspond to what we usually think of as points and lines. We will now prove some basic
properties about projective planes.

1. For our first example, the following image shows a projective plane with 7 points and lines (the circle
is also a line, as are the six line segments). This projective plane is known as the Fano Plane. For the
following questions about the Fano Plane, no proof is required.

a. [2] For the Fano Plane, how many elements does I, the set encoding the incidence relation,
contain? In other words, how many pairs (p, l), consisting of a point and a line in the Fano Plane,
are there with p incident to l?

Solution: There are 7 lines and 3 points on each line, giving 21 incident pairs.

b. [2] Redraw the Fano Plane and circle four points, no three of which are collinear. This will show
that the Fano Plane satisfies the non-degeneracy condition.

Solution: One choice is the 3 points on the circle, in addition to the center point.

c. [2] For the previous part, how many such quadruples of points are there in the Fano Plane?

Solution: There are
(
7
4

)
= 35 choices of 4 points. If four points fail to satisfy condition 3, then

since every line has 3 points, 3 of the points much be on the same line, and the fourth point can
be any other point. To choose these points is thus equivalent to choosing a line (and thus all
three of its points) and a point not on the line. There are 7 lines and 4 points not on any fixed
line, giving 28 choices that fail the 3rd condition. Thus, the number of chocies that satisfy the
condition is 35− 28 = 7.

d. [2] Compute the number of permutations f of the 7 points of the Fano Plane such that if p1, p2, p3
are on the same line, so are f(p1), f(p2), f(p3). (Such a permutation is also called a collineation,
and collineations will be studied in the final section.)

Solution: If we choose the images of the central point and the bottom left and bottom right
points, the collineation is determined, since the three points on the circle must be sent to the 3rd
point on each of the 3 lines spanned by the images of the first three points, and then the 7th
point, at the top, has one choice of image.

We can send the bottom left point to any of the 7 points, and then send the bottom right point
to any of the 6 remaining points. The center point can then be sent to any point not on the same
line as the images of the first two points, giving 4 choices. Thus, the total number of collineations
of the Fano Plane is 7 · 6 · 4 = 168.

2. Now, we will use the non-degeneracy condition to prove some general facts about projective planes.
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a. [2] Prove that a projective plane must have at least 6 lines.

Solution: Let a, b, c, d be four points, no three of which are collinear. Then, we claim that the
lines ab, ac, ad, bc, bd, cd are six distinct lines. If two of them were in fact the same line, it would
contain either 3 or 4 of the points, contradicting no three of a, b, c, d being collinear. Thus, any
projective plane has at least 6 lines.

b. [2] Prove that a projective plane must have at least 5 points.

Solution: As in the previous part, let a, b, c, d be points such that no three are collinear. Since
ab and cd are distinct lines (as shown above), they must intersect at some point p. If p were a or
b, then line cd would also contain that point in addition to cd; if p were c or d, then line ab would
contain that point in addition to a and b. In either case, three of the points a, b, c, d would be on
the same line, a contradiction. Thus, p must in fact be a new, fifth point. Thus, every projective
plane has at least 5 points.

c. [2] Show that any projective plane contains four lines, no three of which are incident to the same
point.

Solution: Let a, b, c, d be four points, no three of which are collinear. Then, the lines ab, ac, ad,
bc, bd, cd are six distinct lines. Consider the four lines ab, bc, cd, ad. Assume for contradiction that
three of them are concurrent. Without loss of generality, these three lines are ab, bc, cd. The first
two lines intersect at b, and the last two lines intersect at c. Since two lines intersect at a unique
point, and these two intersection points are distinct, these three lines cannot be concurrent.

d. [3] Prove that the Fano Plane is the projective plane with the smallest number of points and lines
(i.e., prove that no projective plane has fewer than 7 points or fewer than 7 lines, and prove that
every projective plane with exactly 7 points and lines is equivalent to the Fano Plane).

Solution: Let a, b, c, d be points, no three of which are on the same line. As we saw earlier,
connecting all 6 pairs of these points gives 6 distinct lines. So far, however, lines ab and cd; ac
and bd; and ad and bc do not intersect. Thus, we must adjoin three more points e, f, g to the
plane so that these three pairs of lines intersect. Now, there are 7 points and 6 lines, so we can
only add one more line, which must go through e, f, g. This gives a projective plane of order 2,
which is equivalent to the Fano Plane.

Now, note that conditions 1 and 2 for a projective plane are “dual” to each other, since they can be
obtained from each other by switching the words “point(s)” and “line(s).” We just proved that the dual
of condition 3 always holds as well. Therefore, if any statement is true for all projective planes, its dual
statement will automatically be true as well.

3. We will now prove some more facts about finite projective planes (ones with finitely many points and
lines).

a. [3] Prove that, given any two distinct lines, there is a point not incident to either line.

Solution: Assume for contradiction that every point is on one of the two lines, call them l1, l2.
By the third condition, there are four points, no three of them on the same line. Thus, two of
them must be on l1 and not on l2, and the other two must be on l2 and not l1. If a, b are on l1 and
c, d are on l2, then the lines ad and bc must intersect at some point; this intersection point can’t
be on either line, else 3 of a, b, c, d would be collinear, a contradiction. Thus, we have a point not
on either line.

b. [2] Given a line l and a point p not incident to l, construct a bijection between points incident to
l and lines incident to p. Use this and the previous result to conclude that, given any two distinct
lines, there is a bijection between points incident to the first line and points incident to the second
line.

Solution: We can map a point q on l to the line incident to both p and q. Conversely, we can
map a line incident to p to its point of intersection with the line l. Now, given lines l1 and l2,
and a point p not on either, we have a bijection between points on l1 and lines through p, and
another bijection between lines through p and points on l2. Composing these bijections, we get a
bijection between points on l1 and points on l2.
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c. [2] Assume that a given projective plane has finitely many lines. Prove that if a point p is incident
to n+ 1 lines, then every line not incident to p is incident to n+ 1 points.

Solution: By the previous part, there are as many points on a line not incident to p as there are
lines incident to p, so every line not incident to p has n+ 1 points.

d. [3] Continuing to assume that there are finitely many lines, prove that there’s an integer n ≥ 2
such that every point is incident to n+ 1 lines and every line is incident to n+ 1 points. Conclude
that the projective plane has n2 + n + 1 points and the same number of lines. Such a finite
projective plane will be said to have order n.

Solution: Let a, b, c, d be points no three of which are on the same line. Then each point is
incident to at least 3 lines. Since there are finitely many lines, there’s an integer n ≥ 2 such that
a is incident to n + 1 lines. By the previous part, every line not incident to a has n + 1 points.
Also by the previous part, every line has the same number of points, so each line has n+ 1 points
(a line not incident to a exists, since bc is such a line). Now, if p is any point, then there is a line
l not incident to p (if not, every line passes through p, contradicting the result of the first part),
so by the previous part, p is incident to n+ 1 lines, since l has n+ 1 points.

Now, let p be any point. Then, the n + 1 lines through p contain all the points. Each line has
n + 1 points, n of which are not equal to p. These (n + 1)n points are all distinct since any two
of these lines can only intersect at p. Thus, in addition to p, this gives (n+ 1)n+ 1 = n2 + n+ 1
points in total. By a dual argument, there are n2 + n+ 1 lines in total as well.

4. [8] A degenerate projective plane is a set of points and lines with an incidence relation that satisfies
the first two conditions but fails the third, meaning that given any four points, at least three of them
are incident to the same line. The empty plane, consisting of no points or lines, vacuously satisfies the
first two conditions and fails the third. Prove that a nonempty degenerate projective plane is one of
three following types:

a. There is a line and no points, or there is a point and no lines.

b. There is a line l incident to all the points. There is a point p such that every other line (if there
are other lines) is incident to just the point p.

c. There is a line l incident to all the points except one (call it p). Every other line (if there are any)
is incident to just p and one point that is incident to l.

Solution: If there are no points, there can only be one line (since two lines would have to intersect at
a point). Similarly, if there are no lines, there can only be one point. This gives the first case, so now
assume that our plane has at least one point and one line.

If a line l is incident to all the points, then any other line must intersect l at the same point (for if l1
intersects l at p1 and l2 does at p2, then the point of intersection of l1 and l2 can’t be any point on l,
contradicting l being incident to all the points). This gives the second case.

If there is only one point, then either there is just one line, giving a special case of the second or third
cases, depending on if the point and line are incident, or there are at least 2 lines, and they all are
incident to p, which is a special subcase of the second case. If there are two points, then the line
between them is incident to all the points, and we have the case discussed above. If there are three
points, they’re either collinear, giving the second case, or they are not. In the latter case, there are
points a, b, c, and lines ab, bc, ac. Any other line would have to intersect each of these three lines at
exactly one point, which is impossible. Thus, we have a triangle, which is a special subcase of the third
case.

Now assume there are at least four points. Since the third condition for a projective plane fails, for
every four points, three of them are collinear. Let a, b, c, d be four points not all on the same line (if
all points are on the same line, we have the second case), and assume a, b, c are on the same line l.
We claim that any other point p 6= a, b, c, d is also on line l. If not, then a, b, d, p are four distinct
points, so three of them are collinear. Neither a, b, d nor a, b, p can be collinear, since their line would
intersect l at two points. So without loss of generality, d, a, p are collinear, on line l1. But repeating
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this argument for the four distinct points b, c, d, p gives that p, b, d or p, c, d are collinear, on line l2.
But then l1 and l2 are distinct lines (since one contains a and the other contains b or c) that intersect
at two points, d and p. This is a contradiction, so in fact, p is on line l. Thus, l is incident to every
point except d, and the other lines just contain d and one point on l, giving the third case.

The Real Projective Plane (25 Points)

In this section, we will consider different but equivalent ways of turning the ordinary plane into a projective
plane.

5. The motivation for the definition of a projective plane comes from the ordinary Euclidean plane, R2.
If we define points and lines to be ordinary points and lines in the real plane, and say that point is
incident to a line if the point is on the line, then we have a geometry that satisfies conditions 1 and 3.
Condition 2 also holds unless the two lines are parallel.

a. [3] Determine the line through the points (2, 3) and (7,−4) in the plane. Write the line equation
in the form y = mx+ b. No proof is required.

Solution: The slope of the desired line is
3− (−4)

2− 7
= −7

5
. Thus, the equation of the line is

y − 3 = −7

5
(x− 2), which is equivalent to y = −7

5
x+

29

5
.

b. [2] Determine the point of intersection of the lines y = 12x − 18 and y = 1
2x + 5. No proof is

required.

Solution: Setting the y’s equal, we have 12x−18 = 1
2x+5 =⇒ 23

2 x = 23 =⇒ x = 2 =⇒ y = 6.
Thus, the point of intersection is (2, 6).

As we noted earlier, R2 is not quite a projective plane because parallel lines exist. We can remedy this
by adding points at infinity and a line at infinity. For every possible slope m (where m can be any real
number or even ∞, for vertical lines), adjoin a point pm so that pm is incident to every line of slope
m. Finally, adjoin a line at infinity that is incident to exactly the points at infinity pm and no other
points. It is clear that this gives a projective plane, which we will call the extended real plane.

6. Consider the Euclidean space R3. Let P be the set of lines through the origin, and let L be the set of
planes through the origin. Say that p ∈ P and l ∈ L are incident if p ⊆ l, i.e., if p is a line in the plane
l.

a. [4] Prove that P and L, under the given incidence relation, form a projective plane. We will call
this projective plane the real projective plane.

Solution: Let l1, l2 be two distinct lines through the origin, and let p1 ∈ l1 and p2 ∈ l2 be
non-origin points. Since the lines are distinct and intersect only at the origin, 0, p1, p2 are not
collinear and thus determine a unique plane through the origin containing both p1 and p1, and
thus containing l1 and l2. So, every two distinct lines are incident to a unique plane.

Let p1, p2 be two distinct planes. Without loss of generality, assume p1 is the xy plane (we can
rotate the space to put one of the planes as the xy plane). Then, p2 will be the set of solutions
(x, y, z) to the equation ax+by+cz = 0, where a, b, c ∈ R are not all 0. The xy plane has equation
z = 0, so the intersection of these planes is given by solutions to ax + by = 0 in the xy plane.
Since p2 is distinct from the xy plane, a and b are not both 0, so this gives a line through the
origin in the xy plane. Therefore, there is a unique line incident to both planes.

Finally, there are four lines, no three of which are on the same plane. For example, take the three
coordinate axes and the line through the origin and (1, 1, 1).

Therefore, L and P form a projective plane.

b. [6] In fact, the real projective plane is equivalent to the extended real plane. To show this,
construct a bijection between the points of the extended real plane and lines in R3 through the
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origin; and between lines of the extended real plane and planes in R3 through the origin; in such
a way that incidence is preserved.

Hint: in R3, consider a plane parallel to the xy plane, and use this plane as the base of an extended
real plane.

Solution: Let p be the plane z = 1. If a line through the origin is not in the xy plane, then
it will intersect p at a point. Thus, we can associate lines not in the xy plane to points in the
real plane. If a line through the origin is in the xy plane, then associate it to the point pm in the
extended real plane, where m is the slope of this line. Now, if p′ is a plane through the origin
which is not the xy plane, then it will intersect the plane p in a line, so we can associate p′ to this
corresponding line in the real plane (which will also include a point at infinity). If p′ is the xy
plane, we can associate it to the line at infinity. This gives a bijection between points and between
lines of the real projective plane and the extended real plane. If l is a line through the origin and
p′ is a plane through the origin containing l and not equal to the xy plane, then l ∩ p ⊆ p′ ∩ p, so
the corresponding point in the extended plane is incident to the corresponding line. If instead, p′

is the xy plane, then the corresponding point is a point at infinity, and the corresponding line is
the line at infinity, so they are still incident. Therefore, our bijections preserve incidence, so our
two projective planes are equivalent.

7. Let S2 be the unit sphere in R3, let P be the set consisting of pairs of antipodal points, i.e., pairs of
the form {x,−x}, for x ∈ S2, and let L be the set of great circles on the sphere, which are circles whose
center is the center of the sphere. Say that a pair of antipodal points is incident to a great circle if
both the points are in the circle.

a. [5] Show that this makes the sphere into a projective plane, which we will call the projective
sphere.

Solution: If we have two non-antipodal points on the sphere, the unique great circle through
them will also pass through both of their antipodes. Conversely, if we have two great circles, they
will intersect in a pair of antipodal points. Finally, four pairs of antipodes, no three of which are
on the same circle, are given by ±(1, 0, 0),±(0, 1, 0),±(0, 0, 1),±(1/

√
3, 1/
√

3, 1/
√

3).

b. [5] Show that the projective sphere is equivalent to the real projective plane, i.e., that we can
map points and lines in one bijectively to points and lines in the other, in a way that preserves
incidence.

Solution: Consider S2 as a subspace of R3. We can associate a line through the origin to the
two antipodal points of intersection of that line with the unit sphere. Similarly, we can associate
a plane through the origin to its intersection with the unit sphere, which will be a great circle.
This is clearly a bijection, and if a line l is on a plane p, then since l ⊆ p, l ∩ S2 ⊆ p ∩ S2, so this
bijection preserves incidence. Since S2 together with P and L are equivalent to the real projective
plane, they also make S2 into a projective plane.

Collineations of Projective Planes (40 Points)

A collineation of a projective plane (P,L, I) is a function f : P ∪L→ P ∪L such that f maps P bijectively
onto P and L bijectively onto L (i.e., f permutes the points and lines), and such that f preserves the
incidence relation, meaning that a point p and a line l are incident if and only if f(p) and f(l) are incident.
The identity function, mapping all points and lines to themselves, is an obvious collineation. Also, if f, g are
collineations, so are f ◦ g and f−1.

8. [8] Prove that if a collineation fixes all points, it also fixes all lines. By duality, it would follow that
any collineation fixing all lines would also fix all points.

Solution: Note that any line l must contain at least 2 points, since if not, then all lines pass through
the one point (l cannot contain no points since, by the first problem, there are at least 4 lines and
any pair of them intersect at a point), which contradicts there being four lines, no three of which are
concurrent, a result of a previous problem. Since these two points are fixed, so is l, the unique line
between them. Since l was arbitrary, the collineation fixes all lines.
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9. A collineation f is called a central collineation, with center p, if f fixes the point p and fixes all lines
incident to p. I.e., given a point q 6= p, the line pq is the same as the line pf(q). We say f is axial, with
axis l, if f fixes the line l and all points incident to l. I.e., if l′ 6= l is another line, then l′ intersects l
at the same point as f(l′) intersects l.

a. [5] Prove that if a collineation of a projective plane has at least two distinct centers or at least
distinct two axes, then it is the identity collineation.

Solution: Assume f is a collineation with two centers, meaning it fixes two distinct points a, b
and all lines incident to either point. Let c be any other point. Then f fixes both of the lines
ac and bc, and thus fixes their point of intersection, which is c. Since c was arbitrary, f fixes all
points and it thus the identity.

Now assume f has two axes, l1, l2. Let l3 be any other line. Then the points l1 ∩ l3 and l2 ∩ l3
are fixed because they are both on axes. But then the line between these points, which is l3, is
also fixed. Since l3 was arbitrary, f fixes all lines and is thus the identity.

b. [5] Prove that an axial collineation that fixes a point p not on the axis is also central, with center
p. Similarly, prove that a central collineation that fixes a line l that doesn’t contain the center is
also axial, with axis l.

Solution: In the first case, the collineation fixes p. Let l be the axis and let l′ be any line incident
to p. Then the point l′ ∩ l is fixed since it is on the axis. Since the distinct points p and l′ ∩ l are
fixed, so is the unique line between them, which is l′. Thus, any line incident to p is fixed, so p is
a center of the collineation.

In the second case, the collineation fixes l. Let q be a point on l. Since the line pq is incident to
p, it is fixed. Since both l and pq are fixed, so is their point of intersection, which is q. Thus, any
point incident to l is fixed, so l is an axis of the collineation.

10. A collineation with center p and axis l is called a (p, l)−collineation.

a. [6] Prove that a (p, l)−collineation is completely determined by its center, its axis, and by its
effect on one point not on the axis and not equal to the center.

Solution: Let f, g be collineations with center p and axis l that send the point q 6= p and not
on l to the same point. We will show that φ = fg−1, which has center p and axis l and fixes q is
the identity. We already know that p, q, and all points on l are fixed. Let r be a point that’s not
one of these, and let s be the point of intersection of the lines qr and l. Then s is fixed, since it’s
on the axis l. Also, since s is on line qr and is fixed by φ, s is also on the line φ(q)φ(r) = qφ(r),
since q is fixed. Also, since the line pr is fixed (since it’s incident to the center p), φ(r) is on this
line. Thus, φ(r) is the point of intersection of the lines qs and pr. But we already know that r
is on both lines, so φ(r) = r. Since r was arbitrary, φ fixes all points and is thus the identity, so
f = g.

b. [6] Prove that a (p, l)−collineation of the Fano Plane is the identity if p is not incident to l. If p
is incident to l, prove that there is always one nonidentity (p, l)−collineation.

Solution: Let a, b, c be the three points on l. Then, the four points a, b, c, p are all fixed. Since p
is not on the same line as a, b, c, the three lines ap, bp, cp are all distinct. For each line, two points
on it are fixed, so the third point is fixed as well. The three extra points on these three lines give
the remaining three points, so all 7 points are fixed, and we have the identity collineation.

Now assume a, b, c are on l and b is the center. There are two lines besides l incident to b, and
each contains two points besides b. We claim that the map that fixes a, b, c and switches the two
extra points on both of the two extra lines is a collineation. We know that line l and the two
extra lines are sent to themselves. We see that the two lines incident to a are switched, and the
two lines incident to b are switched. Thus, lines are sent to lines and incidence is preserved, so
we have a nonidentity collineation.

A projective plane is said to be (p, l)−transitive if for any points q1, q2 such that neither is the center or
on the axis, and such that q2 is on the same line as p and q1, there is a (p, l)−collineation that sends q1 to
q2. A projective plane is said to be complete if it is (p, l)−transitive for any point p and any line l.

7



BMT 2015 Projective Planes 7 March 2015

11. [10] Prove that the real projective plane is complete. It may be helpful to use the equivalence with
the extended real plane, the fact that rotations and translations are collineations in the extended real
plane, and the fact that rotations fixing the origin are collineations in the real projective plane.

Solution: Without loss of generality, we can take l in the real projective plane to be the xy plane,
since we can always rotate any plane through the origin to the xy plane, and rotations fixing the origin
are collineations. Using the equivalence, this plane becomes the line at infinity in the extended real
plane. First, assume that p is a point at infinity. Then q1, q2 are normal points which are collinear with
p, meaning that the slope of the line q1q2 corresponds to p. Thus, we can perform a simple translation
that moves q1 to q2. Translations send lines to themselves, and they fix the line at infinity, as well as
all its points (since lines are sent to lines of the same slope). Furthermore, the other lines incident to
p, i.e., all the lines whose slope is the same as that of q1q2, are fixed as well because the translation is
along that slope. Thus, the translation provides the desired collineation.

Now assume that p, q1, q2 are normal points that are collinear. Without loss of generality, we can
assume p is the origin, since we can perform a translation, which is a collineation, to move p to the
origin. Since q1 and q2 are collinear with the origin, there exists a scalar c such that q2 = cq1. Then,
the map which sends v 7→ cv takes q1 7→ q2, fixes all lines through the origin, and sends lines to lines
of the same slope, thus also fixing the line and points at infinity. Thus, this expansion provides the
desired collineation.
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