BMT 2015 Projective Planes 7 March 2015

Time Limit: 60 mins.
Maximum Score: 100 points.
Instructions:

1. All problems require justification unless stated otherwise.

2. You may freely assume results of a previous problem in proving later problems, even if you have not
proved the previous result.

3. You may use both sides of the paper and multiple sheets of paper for a problem, but separate problems
should be on separate sheets of paper. Label the pages of each problem as 1/2, 2/2, etc., in the upper
right hand corner. Write your team ID at the upper-right corner of every page you turn in.

4. Partial credit may be given for partial progress on a problem, provided the progress is sufficiently
nontrivial.

5. Calculators are not allowed!

Introduction: This power round deals with projective planes, which are geometries without parallel lines.
These structures have applications in multiple branches of mathematics: Finite Projective Planes are useful
in Algebra and Combinatorics, and the Real and Complex Projective Planes are useful in Geometry and
Topology. In this round, we will consider special examples of projective planes and also examine just a few
of their properties.
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Introduction to Projective Planes (35 Points)

A projective plane consists of a set of points P, a set of lines L, and an incidence relation I C P x L. If
(p,1) € I, we say that the point p is incident to the line ! (or vice-versa). The incidence relation is required
to satisfy the following properties:

a. Given any two distinct points, there is a unique line incident to both of them. I.e., there is a unique
line through any two points.

b. Given any two distinct lines, there is a unique point incident to both of them. I.e., any two lines
intersect at a unique point.

c. (Non-degeneracy) There are four points, no three of which are incident to the same line.

From now on, for the sake of brevity, we will often use the notation p;ps to denote the unique line incident
to the points p; and ps, and we will use the notation I N’ to denote the unique point incident to the lines
[ and I’. However, remember that these “points” and “lines” are just elements of some set, and they don’t
necessarily have to correspond to what we usually think of as points and lines. We will now prove some basic
properties about projective planes.

1. For our first example, the following image shows a projective plane with 7 points and lines (the circle
is also a line, as are the six line segments). This projective plane is known as the Fano Plane. For the
following questions about the Fano Plane, no proof is required.

A

a. [2] For the Fano Plane, how many elements does I, the set encoding the incidence relation,
contain? In other words, how many pairs (p, 1), consisting of a point and a line in the Fano Plane,
are there with p incident to [7

b. [2] Redraw the Fano Plane and circle four points, no three of which are collinear. This will show
that the Fano Plane satisfies the non-degeneracy condition.

c. [2] For the previous part, how many such quadruples of points are there in the Fano Plane?

d. [2] Compute the number of permutations f of the 7 points of the Fano Plane such that if p1, p2, p3
are on the same line, so are f(p1), f(p2), f(p3). (Such a permutation is also called a collineation,
and collineations will be studied in the final section.)

2. Now, we will use the non-degeneracy condition to prove some general facts about projective planes.

a. [2] Prove that a projective plane must have at least 6 lines.
b. [2] Prove that a projective plane must have at least 5 points.

c. [2] Show that any projective plane contains four lines, no three of which are incident to the same
point.

d. [3] Prove that the Fano Plane is the projective plane with the smallest number of points and lines
(i.e., prove that no projective plane has fewer than 7 points or fewer than 7 lines, and prove that
every projective plane with exactly 7 points and lines is equivalent to the Fano Plane).

Now, note that conditions 1 and 2 for a projective plane are “dual” to each other, since they can be
obtained from each other by switching the words “point(s)” and “line(s).” We just proved that the dual
of condition 3 always holds as well. Therefore, if any statement is true for all projective planes, its dual
statement will automatically be true as well.

3. We will now prove some more facts about finite projective planes (ones with finitely many points and
lines).
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a. [3] Prove that, given any two distinct lines, there is a point not incident to either line.

b. [2] Given a line ! and a point p not incident to [, construct a bijection between points incident to
[ and lines incident to p. Use this and the previous result to conclude that, given any two distinct
lines, there is a bijection between points incident to the first line and points incident to the second
line.

c. [2] Assume that a given projective plane has finitely many lines. Prove that if a point p is incident
to n + 1 lines, then every line not incident to p is incident to n + 1 points.

d. [3] Continuing to assume that there are finitely many lines, prove that there’s an integer n > 2
such that every point is incident to n+ 1 lines and every line is incident to n 41 points. Conclude
that the projective plane has n? + n + 1 points and the same number of lines. Such a finite
projective plane will be said to have order n.

4. [8] A degenerate projective plane is a set of points and lines with an incidence relation that satisfies
the first two conditions but fails the third, meaning that given any four points, at least three of them
are incident to the same line. The empty plane, consisting of no points or lines, vacuously satisfies the
first two conditions and fails the third. Prove that a nonempty degenerate projective plane is one of
three following types:

a. There is a line and no points, or there is a point and no lines.

b. There is a line [ incident to all the points. There is a point p such that every other line (if there
are other lines) is incident to just the point p.

c. There is a line [ incident to all the points except one (call it p). Every other line (if there are any)
is incident to just p and one point that is incident to I.

The Real Projective Plane (25 Points)

In this section, we will consider different but equivalent ways of turning the ordinary plane into a projective
plane.

5. The motivation for the definition of a projective plane comes from the ordinary Euclidean plane, R2.
If we define points and lines to be ordinary points and lines in the real plane, and say that point is
incident to a line if the point is on the line, then we have a geometry that satisfies conditions 1 and 3.
Condition 2 also holds unless the two lines are parallel.

a. [3] Determine the line through the points (2,3) and (7,—4) in the plane. Write the line equation
in the form y = mx + b. No proof is required.

b. [2] Determine the point of intersection of the lines y = 12z — 18 and y = %x + 5. No proof is
required.

As we noted earlier, R? is not quite a projective plane because parallel lines exist. We can remedy this
by adding points at infinity and a line at infinity. For every possible slope m (where m can be any real
number or even oo, for vertical lines), adjoin a point p,, so that p,, is incident to every line of slope
m. Finally, adjoin a line at infinity that is incident to exactly the points at infinity p,, and no other
points. It is clear that this gives a projective plane, which we will call the extended real plane.

6. Consider the Euclidean space R?. Let P be the set of lines through the origin, and let L be the set of
planes through the origin. Say that p € P and [ € L are incident if p C [, i.e., if p is a line in the plane
l.

a. [4] Prove that P and L, under the given incidence relation, form a projective plane. We will call
this projective plane the real projective plane.
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b. [6] In fact, the real projective plane is equivalent to the extended real plane. To show this,
construct a bijection between the points of the extended real plane and lines in R? through the
origin; and between lines of the extended real plane and planes in R? through the origin; in such
a way that incidence is preserved.

Hint: in R3, consider a plane parallel to the zy plane, and use this plane as the base of an extended
real plane.

7. Let S? be the unit sphere in R3, let P be the set consisting of pairs of antipodal points, i.e., pairs of
the form {x, —x}, for € S?, and let L be the set of great circles on the sphere, which are circles whose
center is the center of the sphere. Say that a pair of antipodal points is incident to a great circle if
both the points are in the circle.

a. [5] Show that this makes the sphere into a projective plane, which we will call the projective
sphere.

b. [5] Show that the projective sphere is equivalent to the real projective plane, i.e., that we can
map points and lines in one bijectively to points and lines in the other, in a way that preserves
incidence.

Collineations of Projective Planes (40 Points)

A collineation of a projective plane (P, L, I) is a function f : PUL — PUL such that f maps P bijectively
onto P and L bijectively onto L (i.e., f permutes the points and lines), and such that f preserves the
incidence relation, meaning that a point p and a line [ are incident if and only if f(p) and f(I) are incident.
The identity function, mapping all points and lines to themselves, is an obvious collineation. Also, if f, g are
collineations, so are f o g and f~!.

8. [8] Prove that if a collineation fixes all points, it also fixes all lines. By duality, it would follow that
any collineation fixing all lines would also fix all points.

9. A collineation f is called a central collineation, with center p, if f fixes the point p and fixes all lines
incident to p. I.e., given a point g # p, the line pq is the same as the line pf(q). We say f is axial, with
axis [, if f fixes the line [ and all points incident to I. Le., if I’ # [ is another line, then I’ intersects [
at the same point as f(I’) intersects .

a. [5] Prove that if a collineation of a projective plane has at least two distinct centers or at least
distinct two axes, then it is the identity collineation.

b. [5] Prove that an axial collineation that fixes a point p not on the axis is also central, with center
p. Similarly, prove that a central collineation that fixes a line [ that doesn’t contain the center is
also axial, with axis .

10. A collineation with center p and axis [ is called a (p,)—collineation.

a. [6] Prove that a (p,l)—collineation is completely determined by its center, its axis, and by its
effect on one point not on the axis and not equal to the center.

b. [6] Prove that a (p,!)—collineation of the Fano Plane is the identity if p is not incident to I. If p
is incident to I, prove that there is always one nonidentity (p,{)—collineation.

A projective plane is said to be (p,l)—transitive if for any points ¢, ga such that neither is the center or
on the axis, and such that g2 is on the same line as p and ¢, there is a (p,l)—collineation that sends ¢; to
g2. A projective plane is said to be complete if it is (p, ) —transitive for any point p and any line .

11. [10] Prove that the real projective plane is complete. It may be helpful to use the equivalence with
the extended real plane, the fact that rotations and translations are collineations in the extended real
plane, and the fact that rotations fixing the origin are collineations in the real projective plane.



