- 1. 130°
- 2. $\frac{1}{3}$
- 3. $\frac{27}{2}$
- 4. 13
- 5. 2
- 6. $\frac{4}{15}$
- 7. $\frac{10}{3}$
- $8. \left(-\frac{\sqrt{3}}{2}, 1\right)$
- 9. $\frac{9}{10}$
- 10. $\frac{8}{5}$

- **P1.** $\angle BXB' = \angle AXA' = \angle AYA' = \angle CYC'$. Thus arcs BB' and CC' have the subtend the same angle in circle C_2 , so the corresponding segments are congruent.
 - 1 point for a reasonably good diagram.
 - 1 point for $\angle XAY = \angle XA'Y$.
 - 2 points for relating angles in C_1 with angles in C_2
 - 2 points for concluding that equal segments follow from equal angles.
- **P2. Solution 1:** Suppose that A = (0,0), l is y = 0, and the center of C_1 is (0,a). Suppose that C_2 has a radius r and center (x,y). By tangency with l, y = r. By tangency with C_1 , $x^2 + (y a)^2 = (r + a)^2 \iff 4ya = x^2$. Thus it is necessary any point in the locus lies on the parabola $y = \frac{x^2}{4a}$. If we start with any point on the parabola, we can construct such a tangent circle with radius r = y as long as $x \neq 0$, which results in a circle of zero radius where B = A. Thus the locus is $\{(x,y): x \neq 0 \text{ and } y = \frac{x^2}{4a}\}$. I.e. a parabola minus a point. **Solution 2:** Note that a parabola is the locus of all points that are equidistant from a line and a point. Let the point be the center of C_1 and the line l_2 be a distance a away from line l (away from the circle). Any center of C_2 is a distance $r_1 + r_2$ away from l_2 as well as O_1 . The excluded point is excluded because that would involve a circle of radius 0.
 - 1 point for using the distance formula to set up the formula.
 - 2 points for simplifying the formula into a parabola
 - 2 points for the reverse argument (showing that a point on the parabola has a circle)
 - 1 point for addressing the one point that is removed from the parabola

Solution 2 Rubric:

- 3 points for correctly defining the locus of the points defining a parabola
- 1 point for computing the distance from the center of C_1 to the centers of C_2
- 1 point for computing the distance from the center of C_1 to line l_2
- 1 point for addressing the one point that is removed from the parabola