- 1. Let ABC be a triangle. The angle bisectors of $\angle ABC$ and $\angle ACB$ intersect at D. If $\angle BAC = 80^{\circ}$, what are all possible values for $\angle BDC$?
- 2. ABCDEF is a regular hexagon. Let R be the overlap between $\triangle ACE$ and $\triangle BDF$. What is the area of R divided by the area of ABCDEF?
- 3. Let M be on segment BC of $\triangle ABC$ so that AM=3, BM=4, and CM=5. Find the largest possible area of $\triangle ABC$.
- 4. Let ABCD be a rectangle. Circles C_1 and C_2 are externally tangent to each other. Furthermore, C_1 is tangent to AB and AD, and C_2 is tangent to CB and CD. If AB = 18 and BC = 25, then find the sum of the radii of the circles.
- 5. Let A = (1,0), B = (0,1), and C = (0,0). There are three distinct points, P,Q,R, such that $\{A,B,C,P\}$, $\{A,B,C,Q\}$, $\{A,B,C,R\}$ are all parallelograms (vertices unordered). Find the area of $\triangle PQR$.
- 6. Let \mathcal{C} be the sphere $x^2 + y^2 + (z 1)^2 = 1$. Point P on \mathcal{C} is (0,0,2). Let Q = (14,5,0). If PQ intersects \mathcal{C} again at Q', then find the length PQ'.
- 7. Define A = (1, 0, 0), B = (0, 1, 0), and \mathcal{P} as the set of all points (x, y, z) such that x + y + z = 0. Let P be the point on \mathcal{P} such that d = AP + PB is minimized. Find d^2 .
- 8. Suppose that $A = \left(\frac{1}{2}, \sqrt{3}\right)$. Suppose that B, C, D are chosen on the ellipse $x^2 + (y/2)^2 = 1$ such that the area of ABCD is maximized. Assume that A, B, C, D lie on the ellipse going counterclockwise. What are all possible values of B?
- 9. Let ABC be a triangle. Suppose that a circle with diameter BC intersects segments CA, AB at E, F, respectively. Let D be the midpoint of BC. Suppose that AD intersects EF at X. If $AB = \sqrt{9}$, $AC = \sqrt{10}$, and $BC = \sqrt{11}$, what is $\frac{EX}{XF}$?
- 10. Let ABC be a triangle with points E, F on CA, AB, respectively. Circle C_1 passes through E, F and is tangent to segment BC at D. Suppose that AE = AF = EF = 3, BF = 1, and CE = 2. What is $\frac{ED^2}{FD^2}$?
- **P1.** Suppose that circles C_1 and C_2 intersect at X and Y. Let A, B be on C_1, C_2 , respectively, such that A, X, B lie on a line in that order. Let A, C be on C_1, C_2 , respectively, such that A, Y, C lie on a line in that order. Let A', B', C' be another similarly defined triangle with $A \neq A'$. Prove that BB' = CC'. (You must include a diagram with your solution).
- **P2.** Suppose that fixed circle C_1 with radius a > 0 is tangent to the fixed line l at A. Variable circle C_2 , with center X, is externally tangent to C_1 at $B \neq A$ and l at C. Prove that the set of all X is a parabola minus a point.