
BMT 2014 Symmetry Groups of Regular Polyhedra 22 March 2014

Time Limit: 60 mins.
Maximum Score: 125 points.
Instructions:

1. When a problem asks you to “compute” or “list” something, no proof is necessary. However, for all
other problems, unless otherwise indicated, you must justify your answers.

2. You may freely assume results of a previous problem in proving later problems, even if you have not
proved the previous result.

3. You may use both sides of the paper and multiple sheets of paper for a problem, but separate problems
should be on separate sheets of paper. Label the pages of each problem as 1/2, 2/2, etc., in the upper
right hand corner. Write your team ID at the upper-right corner of every page you turn in.

4. Partial credit may be given for partial progress on a problem, provided the progress is sufficiently
nontrivial.

5. Throughout this round, unless stated otherwise, all groups are assumed to be finite, meaning they
contain finitely many elements.

6. When you see a product of two group elements which represent permutations, symmetry operations,
or group actions in general, for example gh, you should read it from right to left: first apply h, and
then apply g. This is the same convention as for function composition.

7. You may not use without proof results that are not discussed in this round.

8. Calculators are not allowed!

Introduction: This power round deals with symmetry groups. We will begin by introducing groups, which
are just mathematical objects that satisfy some rules. However, even though this definition is abstract, we
will discuss a more intuitive view of groups as the set of symmetries of certain objects. The Zome kits
provided may be helpful in visualizing the polyhedra and their symmetries. The general aim of this round
is to provide a more visual and hands-on view of a subject that is often perceived as dry and abstract,
and to give you a taste of the power of group theory. One of the things that group theory can show us
is the equivalence between seemingly different types of objects, such as symmetries of a polyhedron and
permutations of a set. Throughout this round, you will encounter many such equivalences.

Although different team members may work on different rounds, it is recommended that all team members
at least read the first section, “Introduction to Groups,” so that they are aware of the relevant definitions.
Many of the sections can be solved independently, and those that require definitions and results from previous
sections will say so in their introductions.
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Introduction to Groups (20 Points)

We will begin with the definition of a group. Though it may seem a bit abstract, once we start discussing
groups as symmetries of objects, the concepts should hopefully become more intuitive.

A group, (G, ·) is a set, G, with a binary operation ·, that takes as inputs two elements of the set G
and outputs another element in the set. I.e., if g and h are elements of the set G, then g · h is also in the set
G. In addition, a group must satisfy the following properties:

a. Associativity: If g, h, and k are in G, then (g · h) · k = g · (h · k).

b. Identity Element: There exists an element 1 in G such that, for every element g in the group, g · 1
= 1 · g = g. Note that this “1” is not the same as the number 1, but is a notation used to denote the
identity element. However, since our groups will be written multiplicatively, and the number 1 is a
multiplicative identity, this notation is a convenient way of representing the identity.

c. Inverse Element: For every element g in G, there exists an inverse g−1 such that g · g−1 = g−1 · g =
1, where 1 is the identity element. Note that both directions must equal 1 for g−1 to actually be an
inverse.

For convenience, we will refer to a group as G instead of (G, ·). An element of a group is just an element of
its underlying set. In addition, we will usually omit the · when writing the binary operation: i.e., g · h will
just be written as gh. We will also generally refer to the binary operation as multiplication.

A group G is said to be abelian if multiplication is commutative: if for all elements g, h in G, gh = hg.
Note that groups are not abelian in general.

1. [2] Prove that the integers, Z, form an abelian group under addition.

Solution: The integers are closed under addition (the sum of two integers is an integer), addition is
associative, 0 is the additive identity (not 1), and −x is the additive inverse of x. Thus, the integers
form a group under addition. Since addition of integers is commutative, this group is abelian.

Note that the integers are not a group under multiplication, since no integer besides 1 and -1 have a
multiplicative inverse: 1 is clearly the identity, but there is no integer n such that 5n = 1, so 5 is not
invertible, and so Z is not a group under multiplication.

2. State why the following are not examples of groups:

a. [2] The nonnegative integers, N0, under addition.

Solution: 0 is still the additive identity. Since this set does not contain any negative integers,
any nonzero integer in the set does not have an additive inverse.

b. [2] The rational numbers, Q, under multiplication.

Solution: 1 is the multiplicative identity. 0 does not have a multiplicative inverse. However, if
you remove 0, the resulting set does form a group under multiplication!

3. a. [2] Prove that the identity of a group is unique, and that every element has a unique inverse. In
other words, show that if 1 and 1′ are identities, then 1 = 1′, and that if a and b are inverses of
g, then a = b.

Solution: Assume 1 and 1′ are both identities. Then 1 ∗ 1′ = 1, since 1′ is an identity, and
1 ∗ 1′ = 1′, since 1 is an identity. Thus, 1 = 1′, so the identity is unique.

Assume that g is a group element with inverses a and b. Then agb = 1b = b, since ag = 1, and
agb = a1 = a, since gb = 1. Thus, a = b, so each element’s inverse is unique.

b. [2] Prove that if g and h are elements of a group G, then (gh)−1 = h−1g−1.

Solution: (gh)(h−1g−1) = gg−1 = 1, and (h−1g−1)(gh) = h−1h = 1, so (gh)−1 = h−1g−1 (this
inverse is unique by the previous part).
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c. [2] Prove the cancellation laws: If g, h, and k are elements of a group, and if gh = gk, then h = k;
Similarly, if gk = hk, then g = h. Conclude that if gh = g or hg = g, then h = 1.

Solution: In the first case, multiply both sides by g−1 on the left to get the desired result. In
the second case, multiply both sides by k−1 on the right. The last two are special cases of the
first 2, where the third group element is 1.

4. [3] For an element g in G, gk, where k is a positive integer, is the result of multiplying g by itself
k times. In addition, g0 = 1 and g−k = (g−1)k. The order of a group element g is the smallest
positive integer k such that gk = 1. If there is no such positive integer, we say the order of g is ∞. For
example, 1 has order 1. Also, the order of a group is the number of elements in it. Prove that, if G
has finite order, so does any element g in G.

Solution: Since G is finite, the set
{

1, g, g2, . . .
}

must eventually have the same group element at 2
different positions. Say gi = gj for some 0 < i < j <∞. Then, multiplying both sides by g−i, we get
1 = gj−i, so g has finite order.

5. [2] If g is an element of order n, prove that g−1 = gn−1.

Solution: ggn−1 = gn = 1, so gn−1 is g’s unique inverse.

6. [3] Prove that, if g is an element of a group G and gk = 1, where k is a positive integer, then k is a
multiple of the order of g.

Solution: Let m be the order of g. By definition, k ≥ m. We can thus write k = qm + r, where q
and m are positive integers and 0 ≤ r < m. Then 1 = gk = gqm+r = (gm)qgr = gr, since gm = 1. But
now we have that gr = 1, where r < m. Since m by definition is the smallest positive integer such that
gm = 1, we must have r = 0, so k = qm, as desired.

Special Types of Groups

In the following sections, we will familiarize ourselves with some special types of groups and begin to see
how they can be used to describe the symmetries of polyhedra.

Cyclic Groups (15 Points)

We will begin by introducing the simplest type of group: the cyclic groups. If C is a cyclic group, then
every element c in C can be written as c = gk, for some g in G. Such an element g is called a generator of
the cyclic group (we will define generators for other groups later).

7. A symmetry operation on an object is a rotation, reflection, or possibly a combination of both,
that keeps the object looking the same as it was originally. These operations form a group under
composition, which is just applying one symmetry operation after another: If σ and τ are symmetry
operations, then στ is a symmetry operation that represents applying τ and then σ. Note that we
always read composed operations from right to left. The identity is just the operation of doing nothing,
and the inverse of a symmetry operation is just the operation that reverses it, returning to the original
position. Throughout this round, we will mostly be only considering the rotations, so you should only
consider rotations unless told otherwise.

a. [2] Consider a regular pentagonal pyramid, which you can build one with the provided Zome kits,
using just blue struts. Describe the elements of the (rotational) symmetry group of the pentagonal
pyramid. This will be the group of rotations of the pyramid that leaves it indistinguishable from
its original state.

Solution: The elements of this rotation group are clockwise rotations by 0, 72, 144, 216, and 288
degrees about the line between the apex and the center of the pentagonal base.

b. [2] Show that this rotation group is cyclic, meaning that any rotation can be achieved by just
applying some rotation some number of times.

Solution: Any of the five rotations can be achieved by just applying the 72 degree rotation some
number of times. Note that the identity can be considered to be this rotation applied 0 times.
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c. [2] Show that this rotation group is equivalent to the group of integers mod 5 under addition, in
the sense that each rotation can be associated to an integer mod 5 such that applying one rotation
after another is associated with the sum of the associated integers of the two rotations.

Solution: We can associate the 0, 72, 144, 216, and 288 degree rotations to the integers 0, 1, 2,
3, and 4 mod 5. It is easy to see that this preserves both group operations, as desired.

8. Let Cn be the cyclic group generated by an element, g, of order n.

a. [3] Show that Cn’s elements are exactly
{

1, g, g2, . . . , gn−1
}

.

Solution: Since Cn is cyclic, every element can be written as gk, for some integer k. By the
division algorithm, we can write k = qn+ r, with 0 ≤ r < n, so gk = gqn+r = (gn)qgr = gr, since
(gn)q = 1q = 1. Thus, every element is equal to one of the elements in

{
1, g, g2, . . . , gn−1

}
. These

elements are all distinct: if gi = gj , where i ≤ j, then gj−i = 1. But since 0 ≤ i, j < n, j − i < n.
This contradicts g having order n, unless j − i = 0, which means i = j. Thus, all the elements in
this set are distinct, and so Cn as exactly n elements.

b. [3] What is the order of gk, in terms of k and n? Given this, what must be true of k and n for
gk to be a(nother) generator?

Solution: Let d = gcd(k, n). Then (gk)
n
d = (gn)

k
d = 1, since gn = 1. Then, by a previous

problem, the order of gk, which we will now call m, must divide n
d . Since (gk)m = gkm = 1, and

the order of g is n, then n divides km. If we let a = n
d , and let b = k

d , then a and b are relatively
prime. We just saw that m must divide a. We also saw that n divides km, which means that ad
divides bdm, meaning a divides bm. Since a and b are relatively prime, a must divide m. Thus,
we have m and a are positive integers that divide each other, so m = a = n

d . Thus, for gk to be
another generator, we need k and n to be relatively prime.

c. [3] Prove that all cyclic groups are abelian.

Solution: In a cyclic group, any element can be written as a power of an element g. Let gi and
gj be 2 such elements. Then gigj = gi+j = gj+i = gjgi. Thus, any two elements commute with
each other, so cyclic groups are abelian.

It turns out that any finite cyclic group Cn is equivalent to the rotational symmetry group of a regular
ngonal pyramid, and also to the group of integers mod n under addition.

Dihedral Groups (10 Points)

We will now discuss a new type of group, called the dihedral groups. D2n, the dihedral group of order 2n,
is the symmetry group of a regular ngon, including both rotations and reflections (this is one case where
we will consider reflections). We can see that there are n ways to rotate the ngon (including the identity
operation), and that there are n reflection axes, giving a total of 2n symmetry operations as elements of

D2n. Let r be the element of D2n that represents a clockwise rotation by
360

n
degrees, and let s represent

reflection over a fixed axis. It is not difficult to see that r has order n and s has order 2, and that r and s
generate the entire group.

9. [2] Consider an equilateral triangle with vertices labeled 1, 2, and 3 in clockwise order, with 1 pointing
up, and let s represent reflection about the vertical axis. Draw the triangle after the symmetry operation
sr is performed, i.e., after first applying r and then applying s (by convention, operations are applied
from right to left, similar to function composition). It may help to build a triangle from the blue Zome
struts to help you visualize the symmetry group.

Solution: We rotate clockwise by 120 degrees and then flip the triangle across the vertical axis,
resulting in the following:
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10. a. [5] Prove that srk has order 2 for all 0 ≤ k ≤ n− 1, and conclude that srk = r−ks.

Solution: If we start with an ngon with vertices labeled 1 to n in clockwise order, with 1 pointing
up, and let s represent reflection across the vertical axis, then it’s not too hard to see that, since
srk sends 1 to the vertex originally occupied by vertex n − k + 1modn, and makes the vertex
labels go counterclockwise, that this operation is a reflection about the line through the center
that bisects the line between vertex 1 and vertex n − k + 1modn. Any reflection applied twice
results in the identity operation, so srk has order 2, meaning that it’s its own inverse. Thus,
srk = (srk)−1 = r−ks.

b. [3] Show that D2n is not abelian when n > 2.

Solution: Since sr = r−1s, and r 6= r−1 (since n > 2, and r has order n), D2n is not abelian
when n > 2.

Note that, though D2n can be seen as the full symmetry group of a regular ngon, it can also be seen as
the rotation group of an ngonal prism. Thus, the cyclic and dihedral groups, the simplest groups, can be
thought of as the rotation groups of pyramids and prisms, the simplest polyhedra. To describe the rotation
groups of more complicated polyhedra, we will need to introduce two new types of groups.

Symmetric Groups (20 Points)

Sn, the symmetric group on n letters, is the group of permutations of n objects. Formally, a permutation
is a function from from the set of first n positive integers to itself such that the function does not send any two
integers to the same integer. Intuitively, you can think of a permutation as a “reordering” of these n integers.
Since permutations can be thought of as functions, the group operation will be function composition, i.e.,
applying one permutation after another. Thus, Sn has order n!, which is the number of ways to permute the
n integers.

We will now introduce a very useful notation, known as cyclic notation, for representing elements of Sn.
In this notation, elements are written as products of disjoint cycles, where each number in a cycle is sent
to the next number, with the last number being sent to the first. For example, if we consider S3 acting on
the ordered set {1, 2, 3}, the element of S3 that sends 1 to 2, 2 to 1, and 3 to 3, resulting in {2, 1, 3}, can
be written in this notation as (12)(3). Cycles of length 1 can be omitted, giving the more concise (12). In
a similar fashion, (123) represents sending 1 to 2, 2 to 3, and 3 to 1, resulting in {2, 3, 1}. The identity
permutation is still written as 1. Note that (12) = (21) and (123) = (231) = (312). One can see after some
thought that this cycle decomposition is unique up to the ordering of the cycles and circular permutations
of the numbers in each cycle. By convention, we write the smallest number in the cycle first, and we will
order the cycles by the first number in each. From now on, all elements of symmetric groups will be written
in cyclic notation.

11. [2] Compute the inverses of the following permutations: (1 2), (1 2 3 4 5), and (1 2)(3 4 5)(6 8 7 9).
No proof is required.

Solution: The respective inverses are (1 2), (1 5 4 3 2), and (6 9 7 8)(3 5 4)(1 2).

12. [2] Compute the following product of permutations: (1 2 3)(2 3 4)(2 1 4). Recall that permutations
are applied from the right to the left. No proof is required.

Solution: The product is (1 3 4).

13. a. [2] Using cyclic notation, write down all the elements of S3.

Solution: The elements of S3 are 1, (1 2), (2 3), (1 3), (1 2 3), and (1 3 2).

b. [3] Prove that S3 is equivalent to D6, the symmetry group of an equilateral triangle.

Solution: Note that each both S3 and D6 have 6 elements. In addition, note that an element of
D6 permutes the vertices of an equilateral triangle. If we start with a triangle whose vertices are
labeled 1, 2, and 3, clockwise, then 1, r, and r2 give all clockwise permutations of the vertices,
and s, sr, and sr2 give all counterclockwise permutations of the vertices. Thus, since D6 gives all
permutations of a triangle’s vertices, it’s equivalent to S3.
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c. [3] Prove that Sn is not abelian for n > 2.

Solution: Since n > 2, the elements (1 2) and (1 3) are in Sn. Note that (1 2)(1 3) switches 1 and
3 and then switches 1 and 2 (reading the product from right to left), so the resulting permutation
is (1 3 2), since 3 occupies 1’s former position, 2 occupies 3’s former position, and 1 occupies 2’s
former position. However, (1 3)(1 2) results in (1 2 3) by similar reasoning, so (12)(13) 6= (13)(12),
so Sn is not abelian when n > 2.

14. [3] Show that, when written as the product of disjoint cycles, the order of an element of a symmetric
group is the least common multiple of the lengths of all of its cycles. You can assume that disjoint
cycles commute, i.e., if σ and τ are disjoint cycles, then στ = τσ.

Solution: The order of a single cycle is clearly just the length of the cycle. Since disjoint cycles
commute, raising a permutation to some power is the same as raising each cycle to that power. So for
a permutation σ, if σn = 1, then n must be a multiple of every cycle length. Thus, the order of σ is
the least common multiple of the lengths of its cycles.

15. [5] Prove that Sn is generated by all of its 2-cycles, i.e., its transpositions. This means that you can
get any permutation in Sn by composing some number of transpositions.

Solution: Note that an k-cycle can be written as a product of transpositions: (a1a2 . . . ak) =
(a1ak)(a1ak−1) · · · (a1a3)(a1a2). Thus, any product of disjoint cycles, and thus any element of Sn,
can be written as a product of transpositions, so transpositions generate Sn.

Alternating Groups (20 Points)

Note: It is strongly recommended that you at least read the section on symmetric groups before doing these
problems.

An, the alternating group on n letters, is the group of even permutations of Sn. Recall that any element
of Sn can be written as a product of transpositions. An then consists of those elements of Sn that can be
written as a product of an even number of transpositions. Such elements are called even permutations,
while elements of Sn that can be written as a product of an odd number of transpositions are called odd
permutations.

16. a. [8] Prove that a permutation σ in Sn cannot be both even and odd: that is, show that σ cannot
be written both as a product of an even number of transpositions and a product of an odd number
of transpositions. Possible hint: begin by proving that 1 is even and not odd.

Solution: Clearly, 1 is even, since it can be written as the (empty) product of 0 transpositions.
Alternatively, if you don’t buy that 0 is even, then note that 1=(1 2)(1 2), and 2 is certainly even,
so 1 is therefore even. To show that 1 is not odd, assume that 1 = t1t2 · · · tj , where j is odd and the
ti’s are transpositions. We seek to show that 1 can be written as a product of t−2 transpositions:
let x be a number that appears in t1. Obviously, x must appear in at least 1 other transposition,
since the product of these transpositions is 1, meaning that x must move back to its original
position. So say x first appears again in ti, where 1 < i ≤ j. Let ti = (xy) and consider ti−1.
Unless i = 2 (which we will soon consider), ti−1 does not contain x since we assumed ti contained
the first x after the 1st transposition. So either ti−1 shares y with ti or it is disjoint with ti. In
the first case, note that (yz)(xy) = (xz)(yz). In the second case, we see that (ab)(xy) = (xy)(ab).
In either case, we can move the cycle containing x closest to t1 without changing the number
of x’s in the product. Repeating this, we eventually move the cycle containing x to the 2nd
position, making the first 2 cycles (xa)(xb). If a = b, the the 2 cycles cancel, and we’ve reduced
our product to j − 2 transpositions. Otherwise, (xa)(xb) = (axb) = (bx)(ba). In this case, we’ve
reduced the number of x’s in our product by 1. There must be another x in the product, so we
can do this again. Eventually, the final 2 x’s must cancel each other out, reducing the product
to j − 2 transpositions. Thus, we can keep reducing our product by 2 transpositions each time,
until we get 1 as the product of 1 transposition, which is clearly impossible. Thus, 1 is not an
odd permutation.

This means that a permutation σ cannot be both odd and even: If we assume for sake of con-
tradiction that σ = t1t2 · · · t2n = T1T2 · · ·T2n+1, then, since the inverse of any transposition is
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itself, 1 = T1T2 · · ·T2n+1t2n · · · t2t1. We have thus written 1 as the product of an odd number of
transpositions, which we just showed is impossible. Thus, σ cannot be both even and odd.

b. [4] Prove that the product of two even and of two odd permutations is even, while the product

of an even and an odd permutation is odd. Conclude that the order of An is
n!

2
for n > 1.

Solution: Consider two permutations σ and τ . If σ can be written as the product of s transpo-
sitions, and τ can be written as the product of t transpositions, then στ can be written as the
product of s+ t transpositions. If s and t are both even or both odd, then s+ t is even; if one of
s and t is even and the other is odd, then s + t is odd. Thus, the product of two even or of two
odd permutations is even while the product of two permutations of opposite parity is odd.

Consider the set of elements of Sn and then consider the set of elements in Sn multiplied by the odd
permutation (1 2). Since this operation is invertible, both sets contain every element of Sn exactly
once. However, every odd permutation is sent to an even permutation and vice-versa. Since both
sets have the same number of even permutations and the same number of odd permutations as
each other, it follows that Sn contains an equal number of odd and even permutations, which

means the order of An, the group of even permutations, is
n!

2
.

c. [3] Show that, when written in cyclic notation, the elements of An are those elements of Sn with
an even number of cycles of even length. Use this fact to list the elements of A4.

Solution: Note that a cycle (a1a2 · · · ak) can be written as the following product of transpositions:
(a1ak)(a1ak−1) · · · (a1a3)(a1a2). This product contains k − 1 transpositions, so an even-length
cycle represents an odd permutation and vice-versa. Thus, for a permutation to be odd, it must
have an even number of cycles of even length.

Therefore, the elements of A4 are 1, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4
3), (1 2)(3 4), (1 3)(2 4), and (1 4)(2 3).

17. [5] Prove that An is generated by all of its 3-cycles. This means that any permutation in An can be
achieved by just composing some number of 3-cycles.

Solution: Any element of An can be written as the product of an even number of transpositions, so it
suffices to show that any product of two transpositions can be written as a product of 3-cycles. We can
assume these transpositions are not equal, otherwise we can cancel them. Note that (xy)(xz) = (xzy)
and (xy)(zw) = (xwz)(xyz). Also, 1 can be written as the empty product of 0 3-cycles. Thus, any
element in An can be written as the product of 3-cycles.

Although Symmetric and Alternating groups may currently seem unrelated to symmetry groups, we will see
in the next section that the rotation groups of the regular polyhedra are just these types of groups.

Regular Polyhedra and Their Rotation Groups (40 Points)

Note: It is strongly recommended that you at least read the sections on symmetric and alternating groups
before doing the problems in the rest of this round.

The regular polyhedra, also known as the Platonic Solids, are polyhedra whose faces are all identical
regular polygons, and whose vertices are all identical, having the same number of these polygons meeting at
each vertex. The 5 Platonic Solids are listed below. These are the only five Platonic Solids, though we will
not prove this here.

The tetrahedron has 3 triangles around each vertex. It has 4 faces, 4 vertices, and 6 edges.
The cube has 3 squares around each vertex. It has 6 faces, 8 vertices, and 12 edges.
The octahedron has 4 triangles around each vertex. It has 8 faces, 6 vertices, and 12 edges.
The dodecahedron has 3 pentagons around each vertex. It has 12 faces, 20 vertices, and 30 edges.
The icosahedron has 5 triangles around each vertex. It has 20 faces, 12 vertices, and 30 edges.
It is highly encouraged that you construct all five of them with the provided Zome kits. The tetrahedron

and octahedron can be constructed with just green struts, and the other three can be constructed with just
blue struts.
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Every polyhedron has a dual polyhedron, which can be constructed by placing a point at the center of
each of the original polyhedron’s faces, and connecting each resulting point with the resulting points of all
neighboring faces of the original polyhedron. It is straightforward to see that the tetrahedron is self-dual,
that the cube and octahedron are dual to each other, and that the icosahedron and dodecahedron are dual
to each other.

18. [5] Prove that the rotation group of a tetrahedron is equivalent to A4 by considering its effect on the
vertices of the tetrahedron, and by computing its order.

Solution: There are 4 3-fold axes to rotate around (they pass from each vertex to the center of the
opposite face), and each axis permits 2 nonidentity rotations, giving 8 rotations. In addition, there are
3 2-fold axes (passing through the midpoints of opposite pairs of edges), giving 3 nonidentity rotations.
Adding the identity, we get a total of 12 rotations in the rotation group. Note that these are the only
rotations since any rotation is completely determined by where it sends two of the vertices: the first
vertex has 4 choices, and the second has 3, giving a total of 12 rotations. Also note that, if we label
the vertices of a tetrahedron as 1, 2, 3, and 4, then a rotation about a 3-fold axis is equivalent to a
3 cycle (since any such rotation rotates the 3 vertices of one face of the tetrahedron while fixing the
4th vertex), and a rotation about a 2-fold axis is equivalent to a pair of transpositions (since each
such rotation switches the vertices on each of the edges the rotation axis passes through). Thus, the
tetrahedral rotation group is equivalent to A4.

Group Actions

A group G is said to act on a set S if, for each element g of G, g acts like a function from S to S, sending
elements of S to elements of S. The only restrictions are that, if s is an element of S, 1(s) = s (the identity
sends s to itself) and if g and h are elements of G, h(g(s)) = (hg)(s), which means that applying g and then
h to s gives the same result as applying hg to s. From now on, we will write g(s) as g · s for brevity.

Examples of group actions are Sn acting on the set {1, . . . , n} by permutation, or D2n acting on the
vertices of an ngon by symmetry operations. We will soon study the action on the Platonic Solids by their
rotation groups.

The orbit of an element s of S under a group G, denoted Os. is the set of all elements of S that s can
be sent to by elements of G. In other words, Os = {g · s | g ∈ G}.

The stabilizer of s, denoted as Gs is the set of all elements of G that send s to itself. In other words,
Gs = {g ∈ G | g · s = s}.

19. [2] Show that, if G acts on S, and a and b are elements of S such that b = g · a for some g in G, then
a = g−1 · b.
Solution: From the properties of a group action, we have that g−1 · b = g−1 · (g · a) = (g−1g) · a =
1 · a = a.

20. a. [3] Find the number of elements in the orbit and stabilizer of the center of one of a cube’s faces
under its rotation group. Here, the rotation group of the cube acts on the face centers.

Solution: Each face center can be sent to 6 face centers, since a cube has 6 faces. Each face
center is fixed by the 4 rotations (including the identity) whose rotation axis is the one passing
though the face center and that of the opposite face. Thus, the orbit has 6 elements and the
stabilizer has 4 elements.

b. [3] Repeat part a, using the midpoint of an octahedron’s edge.

Solution: An octahedron has 12 edges, so the orbit has 12 elements. The identity rotation and
the 180 degree rotation about the line passing through the midpoints of an opposite pair of edges
fix the midpoints of both edges, so the stabilizer has 2 elements.

c. [8] Orbit-Stabilizer Theorem: Prove that if G acts on S, and s is an element of S, then

|G| = |Os| · |Gs|.
Solution: Let x be any element in the orbit of s and let g be an element of G that takes s
to x. Then for every element h in the stabilizer of s, the element gh also sends s to x, since

8
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(gh) · s = g · (h · s) = g · s = x. In addition, if u is another element that sends s to x, then g−1u is
in the stabilizer of s since (g−1u) · s = g−1(u · s) = g−1 · x = s. Thus, since for every element in
the stabilizer of s, there is an element that sends s to x, and for every element that sends s to x,
there is an element of the stabilizer of s, the stabilizer must be equal in size to the set of elements
that send s to x. This means that the same number of group elements send s to any element of
the orbit of s, so the size of the group is equal to the size of the stabilizer of s times the size of
the orbit of s, thus proving the Orbit-Stabilizer Theorem.

d. [6] Use the Orbit-Stabilizer Theorem and your answers to parts a and b to find the order of the
cubic and octahedral rotation groups. In addition, prove that both of these rotation groups are
equivalent to S4 by finding a set of 4 objects in the cube and octahedron that can be completely
permuted by the respective rotation groups. (You needed to compute the order of the rotation
group first to make sure that it wasn’t a larger group that just contained S4 as a subgroup).

Solution: For the cube’s face center, the orbit has 6 elements and the stabilizer has 4, so the order
of the cubic rotation group is 24. Similarly, for the octahedron’s edge midpoint, the orbit has 12
elements and the stabilizer has 2, so the order of the octahedral rotation group is again 24. To
show that both rotation groups are equivalent to S4, consider the 4 lines passing between opposite
vertices in the cube and between opposite face centers in the octahedron. Since S4 is generated by
its transpositions, we only need to show that any 2 of these lines can be switched while fixing the
other 2. In the cube, this is achieved by rotating by 180 degrees about a line connecting opposite
edge midpoints: the diagonals attached to those 2 opposite edges switch places, while the other
2 diagonals both just rotate 180 degrees about their centers, remaining fixed as a whole. Thus,
all 24 permutations of the cube’s 4 diagonals can be achieves, and since the order of the cubic
rotation group is 24, the group is equivalent to S4. The octahedral rotation group can also be
seen to be equivalent to S4 by a similar argument: in this case, to switch 2 lines between 2 pairs
of opposite face centers, rotate 180 degrees about the line connecting the midpoints of the 2 edges
that connect the pairs of adjacent faces (if we choose 2 pairs of opposite faces in an octahedron,
the 4 chosen faces also come in 2 pairs of adjacent faces).

You have shown that the cubic and octahedral rotation groups are equivalent. This turns out to be a general
property of dual polyhedra, which means that the dodecahedral and icosahedral rotation groups are also
equivalent. This is because the vertices of one polyhedron correspond to the faces of its dual and vice versa,
while the edges in one polyhedron correspond to the edges in its dual.

21. [3] Use the Orbit-Stabilizer Theorem to determine the order of the icosahedral/dodecahedral rotation
group.

Solution: A face center of an icosahedron has an orbit size of 20, since it can be sent to any of the 20
face centers by the rotation group. Its stabilizer has size 3, consisting of the three rotations, including
the identity, around the 3-fold axis connecting the face center with the opposite face center. Thus, the
order of the icosahedral, and thus dodecahedral, rotation group is 60.

22. [10] Consider a dodecahedron. As shown in the figure below, you can inscribe a cube in the dodechae-
dron by drawing some of the diagonals of the dodecahedron’s pentagonal faces. By drawing all 5
diagonals of all 12 pentagonal faces, 5 cubes can be inscribed in a dodecahedron. Show that there is
some rotation that achieves each even permutation of these 5 cubes and, combined with your knowledge
of the order of this group, conclude that the dodecahedral, and thus the icosahedral, rotation group is
equivalent to A5.

Solution: We can see that the dodecahedral rotation group acts on these 5 cubes, permuting them.
Note that with this construction, any 2 cubes share 2 vertices with each other, and these 2 vertices
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are opposite vertices of the dodecahedron. Thus, a 120 degree clockwise or counterclockwise rotation
around the line connecting these 2 vertices will fix the 2 cubes and the other 3 cubes will be sent
to each other, which corresponds to a 3-cycle in A5. Since the 3-cycles generate A5, we now know
that the dodecahedral (and icosahedral) rotation group at least contains all elements of A5. Since
there is no way to switch 2 cubes while fixing the other 3, only even permutations of the cubes are
possible. Alternatively, we can note that the order of this rotation group is 60, since we counted the
rotations with conjugacy classes. Thus, since A5 already has order 60, the icosahedral rotation group
is equivalent to A5.

Conclusion (0 Points)

We have now seen polyhedra whose rotation groups are the cyclic groups, the dihedral groups, and the
Platonic groups (tetrahedral, octahedral, icosahedral). It turns out that these are the only finite rotation
groups in 3 dimensions. We have actually developed all of the tools needed to prove this result, so if anyone
is interested in the proof, it will be provided in the solutions. Feel free to try to prove it yourself, though no
points will be given for it.

Solution: Let G be a finite rotation group in three dimensions. Letting G act on the unit sphere centered
at the origin, we can see that each nonidentity rotation fixes exacty two antipodal points (the endpoints of
the resulting axis of rotation). We will denote the set of those points fixed by some nonidentity element of
G as P . We see that G sends fixed points to fixed points: if the point p is fixed by the nonidentity rotation
h, and if g is an arbitrary element of G, then g(p) is fixed by ghg−1, which is not the identity since h isn’t.

Now, since each nonidentity element of G fixes exactly one pair of antipoidal points, and letting Gp be

the stabilizer of the point p, we get that |G| − 1 =
1

2

∑
p∈P
|Gp| − 1. We exclude the identity from all the

stabilizers, and divide by 2 since each nonidentity element stabilizes 2 points. Now, letting Op be the orbit

of p under G, we see that the Orbit-Stabilizer Theorem gives |G| − 1 =
1

2

∑
p∈P

|G|
|Op|

− 1.

Note that, within an orbit,
∑
p∈Op

|G|
|Op|

−1 = |Op|
(
|G|
|Op|

)
−|Op| = |G|− |Op|. Thus, the above sum can be

rewritten to sum over the orbits: |G| − 1 =
1

2

∑
O

|G| − |O|. Rearranging and dividing by |G| (and recalling

the Orbit-Stabilizer Theorem), we get that 2 − 2

|G|
=
∑
O

(
1− 1

|Gp|

)
, for some p ∈ O. If we let a1, . . . , ar

be the sizes of the stabilizers of distinct orbits, then this becomes 2− 2

|G|
=

r∑
i=1

(
1− 1

|ai|

)
, where each ai

divides |G| and is a positive integer.
Note that ai > 1, since every fixed point is fixed by the identity and, by definition, at least one nonidentity

element. Thus, each term in the sum on the right is at least
1

2
, and since the left hand side is less than 2, r

must be less than 4. We will now check all the cases:

r = 1: Then 2− 2

|G|
= 1− 1

a1
. Since the right hand side is less than 1, |G| (and a1) must be 1, giving the

trivial group, also known as the cyclic group of order 1, C1. Note that in this case, the set of fixed points is
empty, so the right hand side of the original equation was infact an empty sum, and r is actually equal to 0.
This group is the rotation group of an object with absolutely no rotational symmetry.

r = 2: Then 2 − 2

|G|
= 2 − 1

a1
+

1

a2
, which means that

2

|G|
=

1

a1
+

1

a2
. Since neither a1 nor a2 can be

greater than |G|, we must have that a1 = a2 = |G| = n. Thus, each point is stabilized by the whole group,
and there are exactly two such points, necessarily antipodal. Thus, G is a group of rotations perpendicular to
the line through those two points, giving the cyclic group of order n, Cn, which we have seen is the rotation
group of a regular ngonal pyramid (if n = 2, we can take a non-square rectangular pyramid, and if n = 3,
we must make sure the base triangle is not congruent to the lateral triangles, or we would have a regular
tetrahedron).
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r = 3: Then 2 − 2

|G|
= 3 − 1

a1
+

1

a2
+

1

a3
, which can be rearranged as 1 =

1

a1
+

1

a2
+

1

a3
− 2

|G|
. Note

that this means
1

a1
+

1

a2
+

1

a3
> 1., which means that at least one of the ai’s, without loss of generality, a1,

must equal 2. Now assume the ai’s are in ascending order. If a2 = 2 as well, and a3 = n, then |G| must be
2n. Thus, a3’s orbit is of size 2, and since antipodal points have the same orbit size, this orbit must consist
of a pair of antipodal points, which are stabilized by n of G’s elements that act as rotations around the line
connecting the two points. There is also an element of G that switches these 2 points (since they’re in each
other’s orbits), corresponding to reflections on the plane perpendicular to the center of the line between the
antipodal points. This thus gives the dihedral group of order 2n, D2n. Note that D2n is the rotation group of
a regular ngonal prism (if n = 2, take a rectangular prism whose length, width, and height are all different,
and if n = 4, make the height of a different length than the square base, so that the prism isn’t a cube).

Since
1

a1
+

1

a2
+

1

a3
> 1, and a1 = 2, we cannot have both a2 and a3 be greater than 3, so a2=3. The

remaining choices for a3 are then 3, 4, and 5. We will consider all of these cases for (a1, a2, a3):
(2, 3, 3): This forces |G| = 12, and also forces |P | = 14, with orbits of sizes 4, 4, 6. These correspond to

the vertices, face center, and edge midpoints of a regular tetrahedron.
(2, 3, 4): This forces |G| = 24, and also forces |P | = 26, with orbits of sizes 6, 8, and 12, which correspond

to the vertices, face centers, and edge midpoints of a regular octahedron.
(2, 3, 5): This forces |G| = 60, and also forces |P | = 62, with orbits of sizes 12, 20, and 30, which

correspond to the vertices, face centers, and edge midpoints of a regular icosahedron.
Thus, the only finite rotation groups in three dimensions are the cyclic, dihedral, and Platonic rotation

groups. �
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